Small aluminum nanoparticles have the potential to exhibit localized surface plasmon resonances in the deep ultraviolet region of the electromagnetic spectrum, however technical and scientific challenges make it difficult to attain this limit. We report the fabrication of arrays of Al/Al2O3 core/shell nanoparticles with a metallic-core diameter between 12 and 25 nm that display sharp plasmonic resonances at very high energies, up to 5.8 eV (down to λ = 215 nm). The arrays were fabricated by means of a straightforward self-organization approach. The experimental spectra were compared with theoretical calculations that allow the correlation of each feature to the corresponding plasmon modes.
We report a study of the self-assembly of 1,4-benzenedimethanethiol monolayers on gold formed in n-hexane solution held at 60 °C for 30 min and in dark conditions. The valence band characteristics, the thickness of the layer, and the orientation of the molecules were analyzed at a synchrotron using high resolution photoelectron spectroscopy and near edge X-ray adsorption spectroscopy. These measurements unambiguously attest the formation of a single layer with molecules arranged in the upright position and presenting a free -SH group at the outer interface. Near edge X-ray absorption fine structure (NEXAFS) measurements suggest that the molecular axis is oriented at 24° with respect to the surface normal. In addition, valence band features could be successfully associated to specific molecular orbital contributions thanks to the comparison with theoretically calculated density of states projected on the different molecular units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.