Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes of sequential decision problems in the past decades. However, non-stationary settings -- very common in real-world applications -- received little attention so far, and theoretical guarantees on the regret are known only for some frequentist algorithms. In this paper, we propose an algorithm, namely Sliding-Window Thompson Sampling (SW-TS), for nonstationary stochastic MAB settings. Our algorithm is based on Thompson Sampling and exploits a sliding-window approach to tackle, in a unified fashion, two different forms of non-stationarity studied separately so far: abruptly changing and smoothly changing. In the former, the reward distributions are constant during sequences of rounds, and their change may be arbitrary and happen at unknown rounds, while, in the latter, the reward distributions smoothly evolve over rounds according to unknown dynamics. Under mild assumptions, we provide regret upper bounds on the dynamic pseudo-regret of SW-TS for the abruptly changing environment, for the smoothly changing one, and for the setting in which both the non-stationarity forms are present. Furthermore, we empirically show that SW-TS dramatically outperforms state-of-the-art algorithms even when the forms of non-stationarity are taken separately, as previously studied in the literature.
We study, to the best of our knowledge, the first Bayesian algorithm for unimodal Multi-Armed Bandit (MAB) problems with graph structure. In this setting, each arm corresponds to a node of a graph and each edge provides a relationship, unknown to the learner, between two nodes in terms of expected reward. Furthermore, for any node of the graph there is a path leading to the unique node providing the maximum expected reward, along which the expected reward is monotonically increasing. Previous results on this setting describe the behavior of frequentist MAB algorithms. In our paper, we design a Thompson Sampling-based algorithm whose asymptotic pseudo-regret matches the lower bound for the considered setting. We show that -as it happens in a wide number of scenarios- Bayesian MAB algorithms dramatically outperform frequentist ones. In particular, we provide a thorough experimental evaluation of the performance of our and state-of-the-art algorithms as the properties of the graph vary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.