Due to its simplicity, stability, and efficiency, the use of right rectangular prisms is still widespread for potential field modelling and inversion. It is well known that modelling the subsurface with Cartesian grids has important consequences in terms of accuracy of the results. In this paper, we review the main issues that geophysicists face in day‐to‐day work when trying to use right rectangular prisms for performing gravity or full tensor gravity modelling and inversions. We demonstrate the results both theoretically and through Monte Carlo simulations, also exploiting concepts from fractal geometry. We believe that the guidelines contained in this paper may suggest a good practice for the day‐to‐day work of geophysicists dealing with gravity and full tensor gravity data.
Continuous gravity observations performed in the last few years, both at Mt. Etna and Stromboli, have prompted the need to improve the tidal analysis in order to acquire the best corrected data for the detection of volcano related signals. On Mt. Etna, the sites are very close to each other and the expected tidal factor differences are negligible. It is thus useful to unify the tidal analysis results of the different data sets in a unique tidal model. This tidal model, which can be independently confirmed by a modeling of the tidal parameters based on the elastic response of the Earth to tidal forces and the computation of the ocean tides effects on gravity, is very useful for the precise tidal gravity prediction required by absolute or relative discrete gravity measurements. The change in time of the gravimeters' sensitivity is also an important issue to be checked since it affects not only the results of tidal analysis but also the accuracy of the observed gravity changes. Conversely, if a good tidal model is available, the sensitivity variations can be accurately reconstructed so as to retune observed tidal records with the synthetic tide, since the tidal parameters are assumed to be constant at a given location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.