The Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) is constructing a wide-field map of the resolved stellar populations in the extended halos of these two nearby, prominent galaxies. We present new Magellan/Megacam imaging of a ∼ 3 deg 2 area around Centaurus A (Cen A), which filled in much of our coverage to its south, leaving a nearly complete halo map out to a projected radius of ∼150 kpc and allowing us to identify two new resolved dwarf galaxies. We have additionally obtained deep Hubble Space Telescope (HST) optical imaging of eleven out of the thirteen candidate dwarf galaxies identified around Cen A and presented in Crnojević et al. (2016b): seven are confirmed to be satellites of Cen A, while four are found to be background galaxies. We derive accurate distances, structural parameters, luminosities and photometric metallicities for the seven candidates confirmed by our HST/ACS imaging. We further study the stellar population along the ∼60 kpc long (in projection) stream associated with Dw3, which likely had an initial brightness of M V ∼−15 and shows evidence for a metallicity gradient along its length. Using the total sample of eleven dwarf satellites discovered by the PISCeS survey, as well as thirteen brighter previously known satellites of Cen A, we present a revised galaxy luminosity function for the Cen A group down to a limiting magnitude of M V ∼ −8, which has a slope of −1.14 ± 0.17, comparable to that seen in the Local Group and in other nearby groups of galaxies.
We have observed a snapshot of our N-body/Smoothed Particle Hydrodynamics simulation of a Milky Way-sized barred spiral galaxy in a similar way to how we can observe the Milky Way. The simulated galaxy shows a co-rotating spiral arm, i.e. the spiral arm rotates with the same speed as the circular speed. We observed the rotation and radial velocities of the gas and stars as a function of the distance from our assumed location of the observer at the three lines of sight on the disc plane, (l, b) = (90, 0), (120, 0) and (150,0) deg. We find that the stars tend to rotate slower (faster) behind (at the front of) the spiral arm and move outward (inward), because of the radial migration. However, because of their epicycle motion, we see a variation of rotation and radial velocities around the spiral arm. On the other hand, the cold gas component shows a clearer trend of rotating slower (faster) and moving outward (inward) behind (at the front of) the spiral arm, because of the radial migration. We have compared the results with the velocity of the maser sources from Reid et al. (2014), and find that the observational data show a similar trend in the rotation velocity around the expected position of the spiral arm at l = 120 deg. We also compared the distribution of the radial velocity from the local standard of the rest, V LSR , with the APOGEE data at l = 90 deg as an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.