Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data. Proteins 2010. © 2010 Wiley-Liss, Inc.
An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 μs and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.
Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.
SignificanceMany proteins that perform important biological functions are completely or partially disordered under physiological conditions. Molecular dynamics simulations could be a powerful tool for the structural characterization of such proteins, but it has been unclear whether the physical models (force fields) used in simulations are sufficiently accurate. Here, we systematically compare the accuracy of a number of different force fields in simulations of both ordered and disordered proteins, finding that each force field has strengths and limitations. We then describe a force field that substantially improves on the state-of-the-art accuracy for simulations of disordered proteins without sacrificing accuracy for folded proteins, thus broadening the range of biological systems amenable to molecular dynamics simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.