Background: Platelet-Rich Plasma (PRP) induces bone regeneration; however, there is low evidence supporting its efficacy in bone healing. The lack of a standardized protocol of administration represents the main obstacle to its use in the clinical routine for bone defects’ treatment. The purpose of this study was to characterize PRP and elucidate its osteogenic potential. Methods: Platelet count, fibrinogen levels, and growth factors concentration were measured in PRP obtained by four apheresis procedures. HOB-01-C1, a pre-osteocytic cell line, was used to examine the effects of different PRP dilutions (from 1% to 50%) on cell viability, growth, and differentiation. Gene expression of RUNX2, PHEX, COL1A1, and OCN was also assayed. Results: PRP showed a mean 4.6-fold increase of platelets amount compared to whole blood. Among the 36 proteins evaluated, we found the highest concentrations for PDGF isoforms, EGF, TGF-β and VEGF-D. PDGF-AA positively correlated with platelet counts. In three of the four tested units, 25% PRP induced a growth rate comparable to the positive control (10% FBS); whereas, for all the tested units, 10% PRP treatment sustained differentiation. Conclusions: This study showed that PRP from apheresis stimulates proliferation and differentiation of pre-osteocyte cells through the release of growth factors from platelets.
β-thalassemia major (βTM) patients require frequent blood transfusions, with consequences that span from allogenic reactions to iron overload. To minimize these effects, βTM patients periodically receive leucodepleted packed red blood cells (P-RBCs) stored for maximum 14 days. The aim of this study was to compare two alternative routine procedures to prepare the optimal P-RBCs product, in order to identify differences in their content that may somehow affect patients’ health and quality of life (QoL). In method 1, blood was leucodepleted and then separated to obtain P-RBCs, while in method 2 blood was separated and leucodepleted after removal of plasma and buffycoat. Forty blood donors were enrolled in two independent centers; couples of phenotypically matched whole blood units were pooled, divided in two identical bags and processed in parallel following the two methods. Biochemical properties, electrolytes and metabolic composition were tested after 2, 7 and 14 days of storage. Units prepared with both methods were confirmed to have all the requirements necessary for βTM transfusion therapy. Nevertheless, RBCs count and Hb content were found to be higher in method-1, while P-RBCs obtained with method 2 contained less K+, iron and storage lesions markers. Based on these results, both methods should be tested in a clinical perspective study to determine a possible reduction of transfusion-related complications, improving the QoL of βTM patients, which often need transfusions for the entire lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.