Background Numerous methods exist to analyze complex environmental mixtures in health studies. As an illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome. Methods With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001–2002), we used unsupervised methods including clustering to identify profiles of similarly exposed participants, and Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA) to identify common exposure patterns. We also employed supervised learning techniques, including penalized, weighted quantile sum (WQS), and Bayesian kernel machine (BKMR) regressions, to identify potentially toxic agents, and characterize nonlinear associations, interactions, and the overall mixture effect. Results Clustering separated participants into high, medium, and low POP exposure groups; longer log-LTL was found among those with high exposure. The first PCA component represented overall POP exposure and was positively associated with log-LTL. Two EFA factors, one representing furans and the other PCBs 126 and 118, were positively associated with log-LTL. Penalized regression methods selected three congeners in common (PCB 126, PCB 118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS found a positive overall effect of the POP mixture and identified six POPs as potentially toxic agents (furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs 99, 126, 169). BKMR found a positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear associations with PCBs 126 and 169, and a positive overall effect of the mixture, but no interactions among congeners. Conclusions Using different methods, we identified patterns of POP exposure, potentially toxic agents, the absence of interaction, and estimated the overall mixture effect. These applications and results may serve as a guide for mixture method selection based on specific research questions. Electronic supplementary material The online version of this article (10.1186/s12940-019-0515-1) contains supplementary material, which is available to authorized users.
Lead exposure during pregnancy remains a public health problem with potential lifelong impacts on children’s growth and development. Mexico is unique in that stunting and obesity are both major public health concerns in children. This situation might be exacerbated by lead exposure which remains more common in Mexico than in the United States due in part to the use of lead glazed pottery in food preparation and storage. Our objective is to determine how lead exposure during pregnancy is associated with children’s growth parameters, including height, weight, body mass index and percentage body fat measured between ages 4–6 years old in a Mexico City pregnancy cohort. Blood lead was collected in the 2nd and 3rd trimester of pregnancy as well as at delivery. Bone lead was assessed in mothers as a long term exposure biomarker. We performed multivariable linear regression analyses to assess the association between each of these lead exposure biomarkers and child anthropometry. We found a significant negative association between maternal 3rd trimester blood lead concentration and offspring height for age (β −0.10; 95% CI −0.19, −0.01), and a negative association between maternal 3rd trimester blood lead concentration and weight for age (β −0.11; 95% CI −0.22, −0.003). Our results in this Mexican population add to previous findings of an association of lead and decreased stature and weight in early childhood. Ongoing follow-up and longitudinal analyses may help elucidate how this impacts growth trajectory and other children’s health outcomes.
Postpartum psychological functioning impacts both women’s health and outcomes in children. Lower income, ethnic minority women may be at particular risk for adverse postpartum mental health outcomes. Studies link ambient air pollution exposure with psychological dysfunction in adults although this association has not been examined among postpartum women.MethodsWe studied associations between prenatal exposure to particulate matter with diameter ≤ 2.5 μm (PM2.5) and postpartum psychological functioning in a lower income, ethnically mixed sample of urban US women enrolled in a pregnancy cohort study. Analyses included 557 mothers who delivered at ≥37 weeks gestation. Daily estimates of residential PM2.5 over gestation were derived using a satellite-based spatio-temporally resolved model. Outcomes included the Edinburgh Postnatal Depression Scale (EPDS) score from 6 or 12 months postpartum and subscale scores for anhedonia, depressive and anxiety symptoms. Associations were also examined within racial/ethnic groups. Distributed lag models (DLMs) were implemented to identify windows of vulnerability during pregnancy.ResultsMost mothers had less than a high school education (64%) and were primarily Hispanic (55%) and Black (29%). In the overall sample, a DLM adjusted for age, race, education, prenatal smoking, and season of delivery, we found significant associations between higher PM2.5 exposure in the second trimester and increased anhedonia subscale scores postpartum. In race stratified analyses, mid-pregnancy PM2.5 exposure was significantly associated with increased total EPDS scores as well as higher anhedonia and depressive symptom subscale scores among Black women.ConclusionsIncreased PM2.5 exposure in mid-pregnancy was associated with increased depressive and anhedonia symptoms, particularly in Black women.
Background Metal exposure is a public health hazard due to neurocognitive effects starting in early life. Poor socio-economic status, adverse home and family environment can enhance the neurodevelopmental toxicity due to chemical exposure. Disadvantaged socio-economic conditions are generally higher in environmentally impacted areas although the combined effect of these two factors has not been sufficiently studied. Methods The effect of co-exposure to neurotoxic metals including arsenic, cadmium, manganese, mercury, lead, selenium, and to socio-economic stressors was assessed in a group of 299 children aged 6–12 years, residing at incremental distance from industrial emissions in Taranto, Italy. Exposure was assessed with biological monitoring and the distance between the home address and the exposure point source. Children’s cognitive functions were examined using the Wechsler Intelligence Scale for Children (WISC) and the Cambridge Neuropsychological Test Automated Battery (CANTAB). Linear mixed models were chosen to assess the association between metal exposure, socio-economic status and neurocognitive outcomes. Results Urinary arsenic, cadmium and hair manganese resulted inversely related to the distance from the industrial emission source (β − 0.04; 95% CI -0.06, − 0.01; β − 0.02; 95% CI -0.05, − 0.001; β − 0.02 95% CI -0.05, − 0.003) while the WISC intellectual quotient and its sub-scores (except processing speed index) showed a positive association with distance. Blood lead and urinary cadmium were negatively associated with the IQ total score and all sub-scores, although not reaching the significance level. Hair manganese and blood lead was positively associated with the CANTAB between errors of spatial working memory (β 2.2; 95% CI 0.3, 3.9) and the reaction time of stop signal task (β 0.05; 95% CI 0.02, 0.1) respectively. All the other CANTAB neurocognitive tests did not show to be significantly influenced by metal exposure. The highest socio-economic status showed about five points intellectual quotient more than the lowest level on average (β 4.8; 95% CI 0.3, 9.6); the interaction term between blood lead and the socio-economic status showed a significant negative impact of lead on working memory at the lowest socio-economic status level (β − 4.0; 95% CI -6.9, − 1.1). Conclusions Metal exposure and the distance from industrial emission was associated with negative cognitive impacts in these children. Lead exposure had neurocognitive effect even at very low levels of blood lead concentration when socio-economic status is low, and this should further address the importance and prioritize preventive and regulatory interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.