Wind-tunnel experiments are presented in this paper for two different models, single wheel and tandem wheels. The tests are performed in the 2.1 m × 1.5 m wind tunnel at the University of Southampton. The aims of the experiment are to gain a better understanding of the flow past simple landing-gear components and to generate a CFD validation database. Since the model is designed to study basic landing-gear components, the wheel geometry is simplified, with no detailed elements in the assembly. The tandem-wheel configuration is formed of two in-line wheels that can be tested at different inter-axis distances and various angles of attack. Mean and unsteady data of aerodynamic loads and on-surface pressures are measured. A vibration test is performed in situ on the model assembly to validate the unsteady-load measurements. Particle Image Velocimetry (PIV) is used to acquire the velocity fields in the wake downstream of the model. The results highlight the low sensitivity of the measured quantities to the three versions of the wheel hub on the single wheel. The mean drag coefficients of the tandem wheels show a low sensitivity to the inter-axis distance, which has stronger effects on the mean lift coefficients and the unsteady aerodynamic loads. The angle of attack determines relevant changes in both mean and unsteady quantities. The pressures on the wheel surface are used for gaining a better understanding of the flow regimes and the effect of tripping the flow. Additionally, the PIV data are used to compare the velocity profiles in the wake and identify the wake vortical structures.
The aim of this work is to improve the accuracy and efficiency of unsteady aerodynamic loads prediction of landing gears in flight conditions, as part of the UK ATI ALGAAP (Advanced Landing Gear Aero-loads and Aero-noise Prediction) project. Delayed DetachedEddy Simulations (DDES) with the Spalart-Allmaras turbulence model are performed to obtain the desired prediction improvement, both with the fully-turbulent inflow and with laminar inflow and fixed transition. The reference geometries for the current simulations are generic scaled landing-gear wheels in single and tandem configurations, which have been experimentally tested within the project. An experimental database, consisting of mean and unsteady aerodynamic loads, on-surface pressures and velocity fields from particle image velocimetry, is used for CFD validation. The results show the importance of modelling the transition in order to reproduce the experimental data in the transitional regime and to correctly capture the physical flow features. The proposed high-efficiency DDES simulations improve the accuracy of the results with respect to the standard DDES model both on single and tandem wheels. The discrepancy between simulations and experiments on the total mean drag coefficient of tandem wheels is within 7% at zero angle of attack and up to 15% at higher angles of attack.
The major unsteady aerodynamic forces and major physics of a generic single wheel and tandem wheels are studied for the first time using wind tunnel tests. The wind-tunnel tests are performed in the 2.1 m × 1.5 m wind tunnel at the University of Southampton. The tandem-wheel configuration consists of two in-line wheels that can be tested at different inter-axis distances and various installation angles. A vibration test is performed in situ on the model assembly to validate the unsteady-load measurements. Mean and unsteady aerodynamic loads and on-surface pressures are measured. Particle Image Velocimetry is used to acquire the velocity fields in the wake downstream of the model and surface oil-flow technique is used to identify the flow features on the surface of the wheels. Proper Orthogonal Decomposition is also used to characterise the wake in terms of unsteady fluctuations. The results of the experiments on the tandem wheels show that higher values of inter-axis distance correspond to slightly higher total mean drag coefficients and remarkably lower drag coefficient RMS values. Higher installation angles are associated with higher mean drag coefficients but generally lower fluctuations of the force coefficients. Non-zero mean lift coefficients are found for low inter-axis distance configurations at zero installation angle. The flow on the single wheel and on the front wheel of the tandem wheels is affected by laminar-turbulent transitional features. The vortical structures past the tandem wheels consist of four vortices that detach from the tyre shoulders of the front wheel and interact with the rear wheel. The study and obtained databases contribute to the general understanding of the complex flow and help to improve engineering predication of the gear aerodynamic loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.