In this paper we study the Roe index of the signature operator of manifolds of bounded geometry. Our main result is the proof of the uniform homotopy invariance of this index. In other words we show that, given an orientation-preserving uniform homotopy equivalence f : (M, g) −→ (N, h) between two oriented manifolds of bounded geometry, we have that f⋆(IndRoeDM ) = IndRoe(DN ). Moreover we also show that the same result holds considering a group Γ acting on M and N by isometries and assuming that f is Γ-equivariant. The only assumption on the action of Γ is that the quotients are again manifolds of bounded geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.