Protection investments are instrumental in reducing economic losses and preserving public safety. A systematic approach to plan security investments is paramount to guarantee that limited protection resources are utilized in the most efficient manner.In this article, we present an optimization model to identify the railway assets which should be protected to minimize the impact of worst case disruptions on passenger flows. We consider a dynamic investment problem where protection resources become available over a planning horizon. The problem is formulated as a bilevel mixed-integer model and solved using two different decomposition approaches. Random instances of different sizes are generated to compare the solution algorithms. The model is then tested on the Kent railway network to demonstrate how the results can be used to support efficient protection decisions.
Inefficient or poorly planned waste management systems are a burden to society and economy. For example, excessively long waste transportation routes can have a negative impact on a large share of the population. This is exacerbated by the rapid urbanization happening worldwide and in developing countries. Sustainability issues should be accounted for at every stage of decision making, from strategic to daily operations. In this paper, we propose a multiobjective optimization model to design a cost-effective waste management supply chain, while considering sustainability issues such as land-use and public health impacts. The model is applied to a case study in Pathum Thani (Thailand) to provide managerial insights.
In air traffic management, a fundamental decision with large cost implications is the planning of future capacity provision. Here, capacity refers to the available man-hours of air traffic controllers to monitor traffic. Airspace can be partitioned in various ways into a collection of sectors, and each sector has a fixed maximum number of flights that may enter within a given time period. Each sector also requires a fixed number of man-hours to be operated; we refer to them as sector-hours. Capacity planning usually takes place a long time ahead of the day of operation to ensure that sufficiently many air traffic controllers are available to manage the flow of aircrafts. However, at the time of planning, there is considerable uncertainty regarding the number and spatiotemporal distribution of nonscheduled flights and capacity provision, the former mainly due to business aviation, and the latter usually stemming from the impact of weather, military use of airspaces, etc. Once the capacity decision has been made (in terms of committing to a budget of sector-hours per airspace to represent long-term staff scheduling), on the day of operation, we can influence traffic by enforcing rerouting and tactical delays. Furthermore, we can modify which sectors to open at a given time (the so-called sector-opening scheme) subject to the fixed capacity budgets in each airspace. The fundamental trade-off is between reducing the capacity provision cost at the expense of potentially increasing displacement cost arising from rerouting or delays. To tackle this, we propose a scalable decomposition approach that exploits the structure of the problem and can take traffic and capacity provision uncertainty into account by working with a large number of traffic scenarios. We propose several decision policies based on the resulting pool of solutions and test them numerically using real-world data.
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.