Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.
We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.
Ullmann coupling is the most common approach to form surface-confined one- and two-dimensional conjugated structures from haloaryl derivatives. The dimensions of the formed nanostructures can be controlled by the number and location of halogens within the molecular precursors. Our study illustrates that the type of halogen plays an essential role in the design, orientation, and extent of the surface-confined organometallic and polymeric nanostructures. We performed a comparative analysis of five 1,4-dihalobenzene molecules containing chlorine, bromine, and iodine on Cu(110) using scanning tunneling microscopy, fast-X-ray photoelectron and near edge X-ray absorption fine structure spectroscopies. Our experimental data identify different molecular structures, reaction temperatures and kinetics depending on the halogen type. Climbing image nudged elastic band simulations further clarify these observations by providing distinct diffusion paths for each halogen species. We show that in addition to the structure of the building blocks, the halogen type has a direct influence on the morphology of surface-confined polymeric structures based on Ullmann coupling.
Radical cyclization is among the most powerful and versatile reactions for constructing mono- and polycyclic systems, but has, to date, remained unexplored in the context of on-surface synthesis. We report the controlled on-surface synthesis of stable corrole radicals on Ag(111) via site-specific dehydrogenation of a pyrrole N-H bond in the 5,10,15-tris(pentafluoro-phenyl)-corrole triggered by annealing at 330 K under ultrahigh-vacuum conditions. We reveal a thermally induced regioselective cyclization reaction mediated by a radical cascade and resolve the reaction mechanism of the pertaining cyclodefluorination reaction at the single-molecule level. Via intramolecularly resolved probing of the radical-related Kondo signature, we achieve real space visualization of the distribution of the unpaired electron density over specific sites within the corrole radical. Annealing to 550 K initiates intermolecular coupling reactions, producing an extended π-conjugated corrole system.
We report a low-temperature scanning tunneling microscopy and spectroscopy study of the structural and electronic properties of a bilayer of terbium double-decker (bis(phthalocyaninato)terbium(III), TbPc2) molecules on Au(111) at 5 K. The TbPc2 molecules are found to adsorb flat on top of a first compact TbPc2 monolayer on Au(111), forming a square-like packing similar to the underlying first layer. Their frontier-orbital electronic structure, measured by tunneling conductance spectroscopy, clearly differs from that of the underlying first monolayer. Our results of second-layer molecules indicate the absence of, both, hybrid molecule–substrate electronic states close to the Fermi level and a zero-bias Kondo resonance. We attribute these findings to a decreased electronic coupling with the Au(111) substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.