The role of riparian vegetation in shaping river morphology is widely recognized. The interaction between vegetation growth and riverbed evolution is characterized by complex nonlinear feedbacks, which hinder direct estimates of the role of key elements on the morphological evolutionary trajectories of gravel bed rivers. Adopting a simple theoretical framework, we develop a numerical model which couples hydromorphodynamics with biomass dynamics. We perform a sensitivity analysis considering several parameters as flood intensity, type of vegetation, and groundwater level. We find that the inclusion of vegetation determines a threshold behavior, identifying two possible equilibrium configurations: unvegetated versus vegetated bars. Stable vegetation patterns can establish only under specific conditions, which depend on the different environmental and species-related characteristics. From a management point of view, model results show that relatively small changes in water availability or species composition may determine a sudden shift between dynamic unvegetated conditions to more stable, vegetated rivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.