Background: Arm weight compensation with rehabilitation robots for stroke patients has been successfully used to increase the active range of motion and reduce the effects of pathological muscle synergies. However, the differences in structure, performance, and control algorithms among the existing robotic platforms make it hard to effectively assess and compare human arm weight relief. In this paper, we introduce criteria for ideal arm weight compensation, and furthermore, we propose and analyze three distinct arm weight compensation methods (Average, Full, Equilibrium) in the arm rehabilitation exoskeleton 'ARMin'. The effect of the best performing method was validated in chronic stroke subjects to increase the active range of motion in three dimensional space. Methods: All three methods are based on arm models that are generalizable for use in different robotic devices and allow individualized adaptation to the subject by model parameters. The first method Average uses anthropometric tables to determine subject-specific parameters. The parameters for the second method Full are estimated based on force sensor data in predefined resting poses. The third method Equilibrium estimates parameters by optimizing an equilibrium of force/torque equations in a predefined resting pose. The parameters for all three methods were first determined and optimized for temporal and spatial estimation sensitivity. Then, the three methods were compared in a randomized single-center study with respect to the remaining electromyography (EMG) activity of 31 healthy participants who performed five arm poses covering the full range of motion with the exoskeleton robot. The best method was chosen for feasibility tests with three stroke patients. In detail, the influence of arm weight compensation on the three dimensional workspace was assessed by measuring of the horizontal workspace at three different height levels in stroke patients. Results: All three arm weight compensation methods reduced the mean EMG activity of healthy subjects to at least 49% compared with the no compensation reference. The Equilibrium method outperformed the Average and the Full methods with a highly significant reduction in mean EMG activity by 19% and 28% respectively. However, upon direct comparison, each method has its own individual advantages such as in setup time, cost, or required technology. The
Objective. Mobile Brain/Body Imaging (MoBI) frameworks allowed the research community to find evidence of cortical involvement at walking initiation and during locomotion. However, the decoding of gait patterns from brain signals remains an open challenge. The aim of this work is to propose and validate a deep learning model to decode gait phases from Electroenchephalography (EEG). Approach. A Long-Short Term Memory (LSTM) deep neural network has been trained to deal with time-dependent information within brain signals during locomotion. The EEG signals have been preprocessed by means of Artifacts Subspace Reconstruction (ASR) and Reliable Independent Component Analysis (RELICA) to ensure that classification performance was not affected by movement-related artifacts. Main results. The network was evaluated on the dataset of 11 healthy subjects walking on a treadmill. The proposed decoding approach shows a robust reconstruction (AUC > 90%) of gait patterns (i.e. swing and stance states) of both legs together, or of each leg independently. Significance. Our results support for the first time the use of a memory-based deep learning classifier to decode walking activity from non-invasive brain recordings. We suggest that this classifier, exploited in real time, can be a more effective input for devices restoring locomotion in impaired people.
Despite the advances in the field of brain computer interfaces (BCI), the use of the sole electroencephalography (EEG) signal to control walking rehabilitation devices is currently not viable in clinical settings, due to its unreliability. Hybrid interfaces (hHMIs) represent a very recent solution to enhance the performance of single-signal approaches. These are classification approaches that combine multiple human-machine interfaces, normally including at least one BCI with other biosignals, such as the electromyography (EMG). However, their use for the decoding of gait activity is still limited. In this work, we propose and evaluate a hybrid human-machine interface (hHMI) to decode walking phases of both legs from the Bayesian fusion of EEG and EMG signals. The proposed hHMI significantly outperforms its single-signal counterparts, by providing high and stable performance even when the reliability of the muscular activity is compromised temporarily (e.g., fatigue) or permanently (e.g., weakness). Indeed, the hybrid approach shows a smooth degradation of classification performance after temporary EMG alteration, with more than 75% of accuracy at 30% of EMG amplitude, with respect to the EMG classifier whose performance decreases below 60% of accuracy. Moreover, the fusion of EEG and EMG information helps keeping a stable recognition rate of each gait phase of more than 80% independently on the permanent level of EMG degradation. From our study and findings from the literature, we suggest that the use of hybrid interfaces may be the key to enhance the usability of technologies restoring or assisting the locomotion on a wider population of patients in clinical applications and outside the laboratory environment.
Highly impaired stroke patients at early stages of recovery are unable to generate enough muscle force to lift the weight of their own arm. Accordingly, task-related training is strongly limited or even impossible. However, as soon as partial or full arm weight support is provided, patients are enabled to perform arm rehabilitation training again throughout an increased workspace. In the literature, the current solutions for providing arm weight support are mostly mechanical. These systems have components that restrict the freedom of movement or entail additional disturbances. A scalable weight compensation for upper and lower arm that is online adjustable as well as generalizable to any robotic system is necessary. In this paper, a model-based feedforward weight compensation of upper and lower arm fulfilling these requirements is introduced. The proposed method is tested with the upper extremity rehabilitation robot ARMin V, but can be applied in any other actuated exoskeleton system. Experimental results were verified using EMG measurements. These results revealed that the proposed weight compensation reduces the effort of the subjects to 26% on average and more importantly throughout the entire workspace of the robot.
Falls are the second most frequent cause of injury in the elderly. Physiological processes associated with aging affect the elderly’s ability to respond to unexpected balance perturbations, leading to increased fall risk. Every year, approximately 30% of adults, 65 years and older, experiences at least one fall. Investigating the neurophysiological mechanisms underlying the control of static and dynamic balance in the elderly is an emerging research area. The study aimed to identify cortical and muscular correlates during static and dynamic balance tests in a cohort of young and old healthy adults. We recorded cortical and muscular activity in nine elderly and eight younger healthy participants during an upright stance task in static and dynamic (core board) conditions. To simulate real-life dual-task postural control conditions, the second set of experiments incorporated an oddball visual task. We observed higher electroencephalographic (EEG) delta rhythm over the anterior cortex in the elderly and more diffused fast rhythms (i.e., alpha, beta, gamma) in younger participants during the static balance tests. When adding a visual oddball, the elderly displayed an increase in theta activation over the sensorimotor and occipital cortices. During the dynamic balance tests, the elderly showed the recruitment of sensorimotor areas and increased muscle activity level, suggesting a preferential motor strategy for postural control. This strategy was even more prominent during the oddball task. Younger participants showed reduced cortical and muscular activity compared to the elderly, with the noteworthy difference of a preferential activation of occipital areas that increased during the oddball task. These results support the hypothesis that different strategies are used by the elderly compared to younger adults during postural tasks, particularly when postural and cognitive tasks are combined. The knowledge gained in this study could inform the development of age-specific rehabilitative and assistive interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.