The use of Al-alloys is increasing in the automotive industry due to the pressing necessity to reduce weight and fuel consumption. Several parts concerning the car body are assembled through welding, where a high-quality seam is a key requirement. For this purpose, laser welding stands as an appealing option. On the other hand, laser welding of Al-alloys is a complex process due to the high reflectivity, reactivity, and crack susceptibility of these materials. In many cases, such issues limit the applicability of the autogeneous welding, which is an advantageous feature of laser welding. High-brilliance fiber lasers have been an enabling technology for improving the weldability of Al-alloys. However, laser welding of Al-alloys, especially in a lap-joint configuration, requires robust processing conditions able to maintain seam quality for each weld in high volumes even with part tolerances and tooling variability. Accordingly, this work discusses the process development and monitoring in laser welding of 5754 Al-alloy. In particular, the process was carried out in a double lap-joint configuration with 1 mm sheets, commonly used in automotive applications. A 3 kW fiber laser with in-source integrated monitoring capability was employed as the light source. The process feasibility zone was investigated as a function of laser power and welding speed, while the effect of focal position was investigated for the weld robustness. Weld seam types and defects were identified, as well as the monitoring signals associated light back-reflected from the process.
Aluminum alloys are widely spread in many industrial sectors due to their desirable characteristics as low density, good formability, high specific strength, and good resistance to corrosion. Autogenous laser welding is a technology that enables the use of these materials in the industrial process due to its high repeatability, reliability, and ease of automatization. In particular, in automotive applications, Al-alloys are welded in lap-joint configurations with more than 2 layers of material. The welding condition should be monitored in order to detect the complete penetration, hence guaranteeing the appropriate weld resistance. The use of non-invasive and coaxial monitoring solutions is highly desirable for the identification of weld defects during the process. This study investigates an autogenous laser welding process and monitoring in the double lap-joint configuration of sheets of AA 5754. First, the process parameters are investigated to identify the geometrical and mechanical characteristics of the resultant welding seams at different process conditions. The employed high-brilliance 3 kW fiber laser provided the possibility of reading the back-reflected light signal from an internal photodiode. The capability of this signal to be used as a non-invasive, coaxial, and remote monitoring system in order to predict the process outcome was tested. In the experiments the back-reflected light intensity could be correlated to the weld seam width at the second interface, as well as the strength of the joint to shear. Finally, the monitoring signal behavior was demonstrated under simulated weld defect conditions. The results show that weld anomalies such as lack of penetration, misalignment, and gap formation can be sensed through the monitoring approach.
Due to the continuous weight reduction effort in the automotive sector, formability enhancement of aluminum alloys in forming and hydroforming processes is gathering much attention from research institutes and industries. During sheet forming processes, large deformations are desired to obtain complex shapes but these are limited by the appearance of defects such as wrinkling and cracks. To avoid these issues, intermediate annealing heat treatments are often applied as a possible solution. Nevertheless in large components where small details have to be created, local heat treatment through lasers can be cost effective over the furnace treatment of the whole part and it would limit possible geometrical distortion in large components. The following article presents fiber laser process parameters definition on deformed sheets made of Al6060 alloy. Grain structure variation and hardness decrease were studied to correctly select process parameters (laser power, feeding speed and overlapping among subsequent passes) to increase material formability. In addition, a systematic comparison between fiber laser and furnace heat treatment was assessed proving the equivalence of the two methods in terms of achieved mechanical proprieties
In plastic injection molding the most critical component in terms of wear and corrosion problem is represented by the barrel-screw system. This is due to the friction of plastic on the inner part of the barrel and to contact between the screw and the inner walls of the barrel. Fiber laser cladding is a promising technique that, through deposition of powder onto a substrate increases wearproprieties and consequently lifetime of the component. In particular, cladding Ni-Cr alloy with WC is an extremely promising combination of elements for this purpose. Specifically, WC is able to increase the hardness of the deposit so that it becomes more suitable for severe wear application. On the other hand, high Cr amount contained in the Ni-based alloy, guaranties high corrosion resistance for harsh environments. Nevertheless, this combination of materials is highly susceptible to cracks. Through the optimization of process parameters and preheating temperature (250-350-450-550°C) defect free coatingsare obtained. This work presentsan investigation on fiber laser cladding of Ni based alloy (Ni40, Ni60) with addition of spherical tungsten carbides (-53+20 μm) on C60 steel substrate. Optimal conditions are evaluated through macro and a micro analysis. In the first case penetrantliquids are used to evaluate crack presence. For the second field, micro hardness was measured and microstructure if cross-sectioned samples were investigated by optical microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.