The effect of the array configuration of circular pin fins is investigated from a numerical and experimental point of view reproducing a typical cooling scheme of a real high pressure aero-engine blade. The airstream enters the domain of interest radially from the hub inlet and exits axially from the trailing edge (TE) outlet section. More than 100 turbulators are inserted in the wedge-shaped TE duct to enhance the heat transfer: A reference array implementing seven rows of staggered pins is compared with an innovative pentagonal arrangement. Investigations were made considering real engine flow conditions: Both numerical calculations and experimental measurements were performed fixing Re=18,000 and Ma=0.3 in the TE throat section. The effect of the tip mass flow rate was also taken into account, investigating 0% and 25% of the TE mass flow rate. The experimental activity was aimed at obtaining detailed heat transfer coefficient maps over the internal pressure side (PS) surface by means of the transient technique with thermochromic liquid crystals. Particle image velocimetry measurements were performed and surface flow visualizations were made by means of the oil and dye technique on the PS surface. Steady-state Reynolds averaged Navier–Stokes simulations were performed with two different computational fluid dynamics (CFD) codes: the commercial software Ansys CFX®11.0 and an in-house solver based on the opensource toolbox OpenFOAM®, to compare the performance and predictive capabilities. Turbulence was modeled by means of the k−ω shear stress transport (SST) model with a hybrid near-wall treatment allowing strong clustering of the wall of interest as well as quite coarse refinement on the other viscous surfaces.
This paper describes a heat transfer experimental study of four different internal trailing edge cooling configurations based on pin fin schemes. The aim of the study is the comparison between innovative configurations and standard ones. So, a circular pin fin configuration with an innovative pentagonal scheme is compared to a standard staggered scheme, while two elliptic pin fin configurations are compared to each other turning the ellipse from the streamwise to the spanwise direction. For each configuration, heat transfer and pressure loss measurements were made keeping the Mach number fixed at 0.3 and varying the Reynolds number from 9000 to 27000. In order to investigate the overall behavior of both endwall and pedestals, heat transfer measurements are performed using a combined transient technique. Over the endwall surface, the classic transient technique with thermochromic liquid crystals allows the measurement of a detailed heat transfer coefficient (HTC) map. Pin fins are made of high thermal conductivity material, and an inverse data reduction method based on a finite element code allows to evaluate the mean HTC of each pin fin. Results show that the pentagonal arrangement generates a nonuniform HTC distribution over the endwall surface, while, in terms of average values, it is equivalent to the staggered configuration. On the contrary, the HTC map of the two elliptic configurations is similar, but the spanwise arrangement generates higher heat transfer coefficients and pressure losses.
Due to expected increases in gas turbine performance, strictly related to firing temperature, heat transfer is a major issue in design processes. To keep components temperature levels below design requirements, cooling systems are commonly used. Nowadays, nozzle and blade cooling systems have reached a high degree of complexity. In a preliminary design stage, both experimental and 3D numerical analyses are usually not very suitable to define geometry, coolant mass flow rate or cooling system typology. This is mainly due to the uncertainty on several parameters, i.e. pressure distributions and materials properties, and their undefined interaction. This work presents a simulation tool useful to provide system cooling development with qualitative and quantitative information about metal temperature, coolant mass flow rate, heat transfer and much more. This tool couples energy, momentum and mass flow conservation equations together with experimental correlations for heat transfer and pressure losses. Metal conduction is solved by two dimensional calculations for several blade to blade sections. This methodology allows to investigate several cooling system configurations and compare them in a relatively short time. Main features of this simulation tool are shown comparing obtained results with experimental data.
An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating a high pressure turbine airfoil leading edge cavity. The test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface, and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A nonuniform mass flow extraction was also imposed to reproduce the effects of the pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band thermochromic liquid crystals (TLCs). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej=10,000-40,000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise, and span-wise averaged values of Nusselt number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.