SummaryAfter internalization into macrophages non-pathogenic mycobacteria are killed within phagosomes. Pathogenic mycobacteria can block phagosome maturation and grow inside phagosomes but under some conditions can also be killed by macrophages. Killing mechanisms are poorly understood, although phagolysosome fusion and nitric oxide (NO) production are implicated. We initiated a systematic analysis addressing how macrophages kill 'non-pathogenic' Mycobacterium smegmatis . This system was dynamic, involving periods of initial killing, then bacterial multiplication, followed by two additional killing stages. NO synthesis represented the earliest killing factor but its synthesis stopped during the first killing period. Phagosome actin assembly and fusion with late endocytic organelles coincided with the first and last killing phase, while recycling of phagosome content and membrane coincided with bacterial growth. Phagosome acidification and acquisition of the vacuolar (V) ATPase followed a different pattern coincident with later killing phases. Moreover, V-ATPase localized to vesicles distinct from classical late endosomes and lysosomes. Map kinase p38 is a crucial regulator of all processes investigated, except NO synthesis, that facilitated the host for some functions while being usurped by live bacteria for others. A mathematical model argues that periodic high and low cellular killing activity is more effective than is a continuous process.
Glycogen autophagy, which includes the sequestration and degradation of cell glycogen in the autophagic vacuoles, is a selective process under conditions of demand for the massive hepatic production of glucose, as in the postnatal period. It represents a link between autophagy and glycogen metabolism. The formation of autophagic vacuoles in the hepatocytes of newborn animals is spatially and biochemically related to the degradation of cell glycogen. Many molecular elements and signaling pathways including the cyclic AMP/cyclic AMP-dependent protein kinase and the phosphoinositides/TOR pathways are implicated in the control of this process. These two pathways may converge on the same target to regulate glycogen autophagy.
We showed recently that actin assembly by phagosomal membranes facilitates fusion with late endocytic organelles in macrophages. Moreover, lipids that induced phagosomal actin also stimulated this fusion process. In macrophages infected with pathogenic mycobacteria actin-stimulatory lipids led to an increase in pathogen destruction, whereas inhibitors facilitated their growth. A model was proposed whereby phagosomal membrane actin assembly provides tracks for lysosomes to move towards phagosomes, thereby facilitating fusion. Here, we investigated how cAMP affected phagosomal actin assembly in vitro, and phagosomal actin, acidification and late fusion events in J774 macrophages. Latex bead phagosomes are shown to possess adenylyl cyclase activity, which synthesizes cAMP, and phosphodiesterase activity, which degrades cAMP. The system is regulated by protein kinase A (PKA). Increasing cAMP levels inhibited, whereas decreasing cAMP levels stimulated, actin assembly in vitro and within cells. Increasing cAMP levels also inhibited phagosome-lysosome fusion and acidification in cells, whereas reducing cAMP had the opposite effect. High cAMP levels induced an increase in intraphagosomal growth in macrophages of both the non-pathogenic Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis, whereas low cAMP levels or inhibition of PKA correlated with increased bacterial destruction. We argue that the phagosome cAMP-PKA system behaves as a molecular switch that regulates phagosome actin and maturation in macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.