Weight reduction has always been a challenge for the automotive industry, mainly to reduce consumption but also improve handling. In electric vehicle design, the battery packs, their shape and positioning are critical aspects that determine the overall weight, weight distribution and, as a consequence, the efficiency, dynamics and stability of the vehicle. This presented a new challenge, to manage this necessary and inflexible weight and volume, developing the vehicle chassis around it and in the best possible way, without compromising the overall efficiency and behavior. In this work, a methodology for nested topology optimization has been developed which combines structural topology optimization and battery pack shaping and positioning. The new methodology is implemented without limiting its applicability, into the framework of the commercial software Hyperstudy by Altair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.