One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for largescale face recognition is the design of appropriate loss functions that enhance discriminative power. Centre loss penalises the distance between the deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in an angular space and penalises the angles between the deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to the exact correspondence to the geodesic distance on the hypersphere. We present arguably the most extensive experimental evaluation of all the recent state-of-the-art face recognition methods on over 10 face recognition benchmarks including a new large-scale image database with trillion level of pairs and a large-scale video dataset. We show that Ar-cFace consistently outperforms the state-of-the-art and can be easily implemented with negligible computational overhead. We release all refined training data, training codes, pre-trained models and training logs 1 , which will help reproduce the results in this paper. * denotes equal contribution to this work.
Automatic facial point detection plays arguably the most important role in face analysis. Several methods have been proposed which reported their results on databases of both constrained and unconstrained conditions. Most of these databases provide annotations with different mark-ups and in some cases the are problems related to the accuracy of the fiducial points. The aforementioned issues as well as the lack of a evaluation protocol makes it difficult to compare performance between different systems. In this paper, we present the 300 Faces in-the-Wild Challenge: The first facial landmark localization Challenge which is held in conjunction with the International Conference on Computer Vision 2013, Sydney, Australia. The main goal of this challenge is to compare the performance of different methods on a new-collected dataset using the same evaluation protocol and the same mark-up and hence to develop the first standardized benchmark for facial landmark localization.
The automatic recognition of spontaneous emotions from speech is a challenging task. On the one hand, acoustic features need to be robust enough to capture the emotional content for various styles of speaking, and while on the other, machine learning algorithms need to be insensitive to outliers while being able to model the context. Whereas the latter has been tackled by the use of Long Short-Term Memory (LSTM) networks, the former is still under very active investigations, even though more than a decade of research has provided a large set of acoustic descriptors. In this paper, we propose a solution to the problem of 'context-aware' emotional relevant feature extraction, by combining Convolutional Neural Networks (CNNs) with LSTM networks, in order to automatically learn the best representation of the speech signal directly from the raw time representation. In this novel work on the so-called end-to-end speech emotion recognition, we show that the use of the proposed topology significantly outperforms the traditional approaches based on signal processing techniques for the prediction of spontaneous and natural emotions on the RECOLA database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.