Este artículo propone un modelo de Proyección Espacial de la Demanda (PED) aplicado a un sistema eléctrico de distribución para el corto, mediano y largo plazo, lo cual incluye la estimación de la magnitud y la ubicación geográfica de la demanda de energía eléctrica de nuevos clientes. El modelo propuesto es un híbrido tendencia-simulación y utiliza una estructura jerárquica: desde abajo hacia arriba para adicionar y analizar datos; y, desde arriba hacia abajo para asignar el crecimiento de carga en sub-áreas y micro-áreas. El enfoque de pequeñas áreas es combinado con modelos de regresión de series espacio-tiempo y análisis de tendencia, en grandes regiones. Se utilizan factores locales, de proximidad y contorno para crear un mapa de preferencias. En cada región, se asigna el crecimiento de clientes en función de los valores del mapa de preferencias y una técnica autómata celular, luego se combina este uso del suelo con los datos de la curva de carga y así se obtiene las cargas en estas pequeñas áreas. Hemos probado el modelo de PED con el sistema de distribución de CENTROSUR; el resultado es un mapa de densidad de demanda que muestra las áreas más probables donde se asignaron los nuevos clientes, proporcionando así información sobre dónde, cuánto y cuándo cambiará la demanda, con el suficiente detalle y precisión requerida. Este artículo propone un modelo de Proyección Espacial de la Demanda (PED) aplicado a un sistema eléctrico de distribución para el corto, mediano y largo plazo, lo cual incluye la estimación de la magnitud y la ubicación geográfica de la demanda de energía eléctrica de nuevos clientes. El modelo propuesto es un híbrido tendencia-simulación y utiliza una estructura jerárquica: desde abajo hacia arriba para adicionar y analizar datos; y, desde arriba hacia abajo para asignar el crecimiento de carga en sub-áreas y micro-áreas. El enfoque de pequeñas áreas es combinado con modelos de regresión de series espacio-tiempo y análisis de tendencia, en grandes regiones. Se utilizan factores locales, de proximidad y contorno para crear un mapa de preferencias. En cada región, se asigna el crecimiento de clientes en función de los valores del mapa de preferencias y una técnica autómata celular, luego se combina este uso del suelo con los datos de la curva de carga y así se obtiene las cargas en estas pequeñas áreas. Hemos probado el modelo de PED con el sistema de distribución de CENTROSUR; el resultado es un mapa de densidad de demanda que muestra las áreas más probables donde se asignaron los nuevos clientes, proporcionando así información sobre dónde, cuánto y cuándo cambiará la demanda, con el suficiente detalle y precisión requerida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.