We found that mature nontransformed CD4+ and CD8+ T lymphocytes could be made susceptible to T cell receptor(TcR)-mediated apoptosis by pretreatment with interleukin-4 (IL-4) or interleukin-2 (IL-2). The degree of susceptibility to death could be correlated with the level of cell cycling as measured by thymidine incorporation, cell doubling times, or the number of cells incorporating bromodeoxyuridine during S phase. However, using pharmacologic cell cycle blocking agents, we found that progression through the cell cycle was not required for cell death. Rather, we found that cells must be in a certain phase of the cell cycle to be susceptible to TcR-mediated death. Cells blocked in G1 phase were resistant to T cell receptor-induced apoptosis, whereas cells blocked in S phase were susceptible. These observations suggest that an important feature of growth lymphokines is their ability to drive T cells into portions of the cell cycle where they are sensitive to antigen receptor-induced apoptosis. Furthermore, these results provide additional evidence that the T cell growth lymphokines IL-2 and IL-4 may participate in the down-regulation of T cell responses by apoptosis-a pathway we have termed "propriocidal regulation".
Fractalkine is a CX3C-family chemokine, highly and constitutively expressed on the neuronal cell surface, for which a clear CNS physiological function has yet to be determined. Its cognate receptor, CX3CR-1, is constitutively expressed on microglia, the brain-resident macrophages; however, these cells do not express fractalkine. We now show that treatment of microglia with fractalkine maintains cell survival and inhibits Fas ligand-induced cell death in vitro. Biochemical characterization indicates that this occurs via mechanisms that may include 1) activation of the phosphatidylinositol-3 kinase/protein kinase B pathway, resulting in phosphorylation and blockade of the proapoptotic functions of BAD; 2) up-regulation of the antiapoptotic protein Bcl-xL; and 3) inhibition of the cleavage of BH3-interacting domain death agonist (BID). The observation that fractalkine serves as a survival factor for primary microglia in part by modulating the protein levels and the phosphorylation status of Bcl-2 family proteins reveals a novel physiological role for chemokines. These results, therefore, suggest that the interaction between fractalkine and CX3CR-1 may play an important role in promoting and preserving microglial cell survival in the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.