Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilisation for unknown reasons. While host, pathogen, and the environment are recognised as important factors that interact to determine host–pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant bat populations a decade after they declined 70–99% due to white‐nose syndrome and subsequently stabilised. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host–pathogen interactions that vary across a patchwork of environments.
Understanding the causes of vaccine failure is important for predicting disease dynamics in vaccinated populations and planning disease interventions. Pathogen exposure dose and heterogeneity in host susceptibility have both been implicated as important factors that may reduce overall vaccine efficacy and cause vaccine failure. Here, we explore the effect of pathogen dose and heterogeneity in host susceptibility in reducing efficacy of vaccines. Using simulation-based methods, we find that increases in pathogen exposure dose decrease vaccine efficacy, but this effect is modified by heterogeneity in host susceptibility. In populations where the mode of vaccine action is highly polarized, vaccine efficacy decreases more slowly with exposure dose than in populations with less variable protection. We compared these theoretical results to empirical estimates from a systematic literature review of vaccines tested over multiple exposure doses. We found that few studies (nine of 5,389) tested vaccine protection against infection over multiple pathogen challenge doses, with seven studies demonstrating a decrease in vaccine efficacy with increasing exposure dose. Our research demonstrates that pathogen dose has potential to be an important determinant of vaccine failure, although the limited empirical data highlight a need for additional studies to test theoretical predictions on the plausibility of reduced host susceptibility and high pathogen dose as mechanisms responsible for reduced vaccine efficacy in high transmission settings.
The effect of cover crops on soil microbes and biogeochemistry was examined. Cover crops increase microbial biomass and bioavailable soil carbon. Increasing cover crop biomass amplifies belowground effects. Agricultural soils are largely degraded or under threat of degradation. Given a growing human population and the subsequent need to feed this population, agricultural practices must maintain productivity and soil quality. Cover cropping regimes are a management approach that aims to address these dual goals. Although the use of cover crops has been linked to many positive effects on soil quality and crop yields, few studies have examined their effects on soil microbial community structure and function under active farm management. We assessed soil characteristics and microbial community structure and function between agricultural field plots with and without cover crops. We expected microbes would respond in the short‐term to increasing cover crop biomass, with increases in microbial activity and a shift in C acquisition toward substrates indicative of root exudation. In the presence of cover crops, we found active microbial biomass and bioavailable‐C increased by 64 and 37%, respectively, indicating the potential for increased C sequestration. Soil NH4+ increased by 64%, whereas soil NO3‐ decreased by 30%, indicating a shift toward less mobile N forms and the potential of greater nutrient retention under cover cropping regimes. Additionally, increasing cover crop biomass was related to lower microbial biomass C/N ratios and to decreased utilization of recalcitrant C substrates. These results potentially suggest a shift toward greater microbial utilization of root‐derived compounds with increasing cover crop biomass. Together, these results indicate that, in the short‐term, the presence of cover crops may improve soil quality, as measured by indices of microbial activity, and soil C and nutrients.
Emerging infectious diseases have resulted in severe population declines across diverse taxa. In some instances, despite attributes associated with high extinction risk, disease emergence and host declines are followed by host stabilization for reasons that are frequently unclear. While host, pathogen, and the environment are recognized as important factors that interact to determine host-pathogen coexistence, they are often considered independently. Here, we use a translocation experiment to disentangle the role of host traits and environmental conditions in driving the persistence of remnant populations a decade after they declined 70-99% and subsequently stabilized with disease. While survival was significantly higher than during the initial epidemic within all sites, protection from severe disease only existed within a narrow environmental space, suggesting host traits conducive to surviving disease are highly environmentally dependent. Ultimately, population persistence following pathogen invasion is the product of host-pathogen interactions that vary across a patchwork of environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.