We explored the consequences of unilateral acoustic trauma to intracochlear and central nervous system structures in rats. An acoustic trauma, induced by applying click stimuli of 130 dB (sound pressure level; SPL) for 30 minutes, resulted in an instant and permanent threshold shift of 95.92 +/- 1.08 dB (SEM) in the affected ear. We observed, as a consequence, a structural deterioration of the organ of Corti. Deprivation-dependent changes of neurons of the auditory brainstem were determined using antibodies against neurofilament and the growth-associated protein GAP-43 and compared with those following cochleotomy, studied earlier. By 231 days posttrauma, spiral ganglion cell bodies and their processes were almost entirely lost from all cochlear regions with destroyed organ of Corti. In the lateral superior olive (LSO) ipsilateral to the trauma, cell bodies of lateral olivocochlear neurons turned transiently GAP-43 positive within the first 1.5 years posttrauma. The time course of emergence and disappearance of this population of neurons was similar to that found after cochleotomy. Additionally, after noise trauma, principal cells in contralateral LSO and in medial superior olive (MSO) on both sides of the brainstem developed an expression of GAP-43 that began 3 and 16 days posttrauma, respectively, and lasted for at least 1 year. Such cells were rarely observed after cochleotomy. An unequivocal rise in GAP-43 immunoreactivity was also found in the neuropil of the inferior colliculus and the ventral cochlear nucleus, both preferentially on the acoustically damaged side. We conclude that the degree and specific cause of sudden unilateral deafness entail specific patterns of plasticity responses in the auditory brainstem, possibly to prevent the neural network dedicated to locate sounds in the environment from delivering erroneous signals centralward.
Investigating activity-dependent plasticity in the auditory brain stem of the adult rat, we observed that electrical intracochlear stimulation led to a tonotopically localized modulation of the phosphorylation of the cAMP response element binding protein (CREB) and an equally localized expression of the immediate early gene product c-Fos in cochlear nucleus and superior olive. As P-CREB is thought to act as transcription factor on one promoter site of the c-fos gene, we compared immunolabeling for P-CREB and c-fos in adjacent brain sections. Following 2h sustained stimulation in previously deafened animals, labelling for P-CREB declined in regions where c-Fos labelling increased. This suggests that the level or state of P-CREB (e.g. whether it is phosphorylated or not) are affected by intracochlear stimulation in a process that appears to be linked to the stimulation-dependent expression of c-Fos in auditory brain stem nuclei.
We induced acoustic trauma by applying click stimuli of 130 dB (SPL) for 30 min to one ear of adult rats. This treatment resulted in an instant and permanent threshold shift of 96 dB in the affected ear. A massive reduction of cochlear nerve fibers in the ventral cochlear nucleus (VCN) was demonstrated by tracing them from the cochlea of rats that survived acoustic overstimulation for 1 year or longer. In the auditory brainstem, we observed a deprivation-dependent appearance of fibers positive for tyrosine receptor kinase B in the ipsilateral VCN between day 3 and day 21 after trauma and an increase in phosphoserine immunostaining in the neuropil of the ipsilateral VCN and in neurons of the contralateral lateral superior olive during the first 30 days after trauma. Immunoreactivity for the cAMP response element binding protein in its phosphorylated form was transiently depressed in the ipsilateral inferior colliculus immediately after trauma and was elevated as late as 7 months after trauma in the ipsilateral VCN. Apparently, a unilateral acoustic overstimulation entails specific regulations of the activity of plasticity-associated molecules through phosphorylation and includes changes to neurotrophin signaling between neurons of the auditory brainstem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.