X-ray diffraction analysis (at 2.1-A resolution) of an acid alpha-amylase from Aspergillus niger allowed a detailed description of the stereochemistry of the calcium-binding sites. The primary site (which is essential in maintaining proper folding around the active site) contains a tightly bound Ca2+ with an unusually high number of eight ligands (O delta 1 and O delta 2 of Asp175, O delta of Asn121, main-chain carbonyl oxygens of Glu162 and Glu210, and three water molecules). A secondary binding site was identified at the bottom of the substrate binding cleft; it involves the residues presumed to play a catalytic role (Asp206 and Glu230). This explains the inhibitory effect of calcium observed at higher concentrations. Neutral Aspergillus oryzae (TAKA) alpha-amylase was also refined in a new crystal at 2.1-A resolution. The structure of this homologous (over 80%) enzyme and additional kinetic studies support all the structural conclusions regarding both calcium-binding sites.
Primary cultures of cerebral cortical astrocytes were incubated with [U-13C]glutamate (0.5 mM) in modified Dulbecco's medium for 2 h. Perchloric acid (PCA) extracts of the cells as well as redissolved lyophilized media were subjected to NMR spectroscopy to identify 13C-labeled metabolites. NMR spectra of the PCA extracts exhibited distinct multiplets for glutamate, aspartate, glutamine, and malate. The culture medium showed peaks for a multitude of compounds released from the astrocytes, among which lactate, glutamine, alanine, and citrate were readily identifiable. For the first time incorporation of label into lactate from glutamate was clearly demonstrated by doublet formation in the C-3 position and two doublets in the C-2 position of lactate. This labeling pattern can only occur by incorporation from glutamate, because natural abundance will only produce singlets in proton-decoupled 13C spectra. Glutamine, released into the medium, was labeled uniformly to a large extent, but the C-3 position not only showed the expected apparent triplet but also a doublet due to 13C incorporation into the C-4 position of glutamine. The doublet accounted for 11% of the total label in the glutamine synthesized and released within the incubation period. The corresponding labeling pattern of [13C]glutamate in the PCA extracts showed that 19% of the glutamate contained 12C. Labeling of lactate, citrate, malate, and aspartate as well as incorporation of 12C into uniformly labeled glutamate and glutamine could only arise via the tricarboxylic acid cycle. The relative amount of glutamate metabolized via this route is at least 70% as calculated from the areas of the C-3 resonances of these compounds.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.