Degradation of wire bonds under accelerated power cycling tests is compared to that caused by mechanical high-frequency cycling for commercial power devices. Using micro-sectioning approach and optical microscopy it is found that the bond fracture under the mechanical cycling follows the same tendencies as that found under power cycling. Results of shear tests of the mechanically cycled bonds also agree well with the bond cracking tendencies observed by optical microscopy investigations. It is found that reduction of contact area of the wire at the bond/metallization interface due to the crack development follows the Paris-Erdogan law, which defines the degradation rate leading to wire lift-off.The results obtained on mechanical cycling in the current work also show good agreement with literature data on wire bond fracture under power cycling proving that main mechanism for wire lift-off failure is related to the mechanical stress development at the interface with metallization layer. The carried out study also creates a potential to further develop a high-frequency mechanical cycling into an alternative for reliability analysis of wire bonds. However, more studies have to be performed to compare degradation mechanisms occuring under power and mechanical accelerated tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.