Three types of silanes were tested for their ability to impart hydrophobicity to solid wood samples: a tetraalkoxy silane bearing four hydrolysable alkoxy groups; two alkyl-trialkoxy silanes; and two multifunctional oligomeric silane systems. The first two types were applied as monomeric silane solutions and pre-condensed sols. The water uptake of treated wood was considerably reduced, especially after treatment with multifunctional waterborne silane systems, while uptake of gaseous water was not changed. Initial water repellence was most pronounced when a fluoro-alkyl functional oligomeric silane system was used; however, after a longer submersion time (24 h), the reduction in water uptake was strongly diminished. Wetting-drying cycles led to a reduction in hydrophobicity of samples treated with sols of alkoxysilanes, while aqueous functional silanes revealed enhanced water-repellent effects after these tests. This was explained by continued condensation of unreacted silanol groups in the aqueous functional silanes during the wetting-drying cycles. X-Ray mapping of silicon (SEM-EDX) showed that the reduction in water uptake due to the multifunctional silane HS 2909 is caused by plugging of the main penetration pathways such as pits, ray cells and ray tracheids.
Different aminofunctional silanes were tested for their suitability to preserve wood against basidiomycetes in a mini-block experiment according to EN 113. High effectiveness against the brown rot fungusConiophora puteanawas maintained over prolonged exposure times of up to 18 weeks. Resistance against the white rot fungusTrametes versicolorwas only enhanced in the initial phase of exposure (6 weeks); after longer exposure times of 18 weeks, considerable mass losses were observed. It was shown that the antifungal resistance was caused by the amino groups of the oligomeric silane systems, while alkyl groups, which influence the water uptake of wood, only had a minor impact. For effective protection, acidic conditions of the treatment solution were important; this promotes the formation of cationised amino groups (ammonium). The silane quaternary ammonium compound (Si-QAC) 3-(trimethoxysilyl)propyldimethyloctadecyl ammonium chloride was applied in combination with an oligomeric silane system to incorporate quaternary ammonium sites into a SiO2matrix via a sol-gel process. This combined treatment significantly enhanced the decay resistance of pine wood againstC. puteana.
The treatment of wood with the used monomer silanes, according to current research results, does not lead to a lasting stabilisation of dimension (reduction of moisture expansion and of shrinkage). Silanes are nevertheless useful to influence specific characteristics of wood. High water resistant effects with simultaneous low influence on absorption behaviour as well as increased resistance to biological degradation caused by a variety of micro-organisms is part of the efficiency profile of this treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.