This paper presents results of the BBOB-2009 benchmarking of 31 search algorithms on 24 noiseless functions in a black-box optimization scenario in continuous domain. The runtime of the algorithms, measured in number of function evaluations, is investigated and a connection between a single convergence graph and the runtime distribution is uncovered. Performance is investigated for different dimensions up to 40-D, for different target precision values, and in different subgroups of functions. Searching in larger dimension and multi-modal functions appears to be more difficult. The choice of the best algorithm also depends remarkably on the available budget of function evaluations.
This paper presents the result for Simultaneous Perturbation Stochastic Approximation (SPSA) on the BBOB 2010 noisy testbed. SPSA is a stochastic gradient approximation strategy which uses random directions for the gradient estimate. The paper describes the steps performed by the strategy and the experimental setup. The chosen setup represents a rather basic variant of SPSA. The strategy can successfully solve 5 functions for D = 2, 2 for D = 3, and 1 for D = 5. For each function at least one target level is reached up to D = 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.