Study Design: Prospective, longitudinal cohort study. Objectives: To quantify the effect of formal training in the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) on the classification accuracy and to identify the most difficult ISNCSCI rules. Settings: European Multicenter Study on Human Spinal Cord Injury (EMSCI). Methods: EMSCI participants rated five challenging cases of full sensory, motor and anorectal examinations before (pre-test) and after (post-test) an ISNCSCI instructional course. Classification variables included sensory and motor levels (ML), completeness, ASIA Impairment Scale (AIS) and the zones of partial preservation. Results: 106 attendees were trained in 10 ISNCSCI workshops since 2006. The number of correct classifications increased significantly (Po0.00001) from 49.6% (2628 of 5300) in pre-testing to 91.5% (4849 of 5300) in post-testing. Every attendee improved, 12 (11.3%) achieved 100% correctness. Sensory levels (96.8%) and completeness (96.2%) are easiest to rate in posttesting, while ML (81.9%) and AIS (88.1%) are more difficult to determine. Most of the errors in ML determination arise from sensory levels in the high cervical region (C2 ÀC4), where by convention the ML is presumed to be the same as the sensory level. The most difficult step in AIS classification is the determination of motor incompleteness. Conclusion: ISNCSCI training significantly improves the classification skills regardless of the experience in spinal cord injury medicine. These findings need to be considered for the appropriate preparation and interpretation of clinical trials in spinal cord injury.
Background Robotic lower-limb exoskeletons have the potential to provide additional clinical benefits for persons with spinal cord injury (SCI). However, high variability between protocols does not allow the comparison of study results on safety and feasibility between different exoskeletons. We therefore incorporated key aspects from previous studies into our study protocol and accordingly conducted a multicentre study investigating the safety, feasibility and usability of the ABLE Exoskeleton in clinical settings. Methods In this prospective pretest-posttest quasi-experimental study across two SCI centres in Germany and Spain, in- and outpatients with SCI were recruited into a 12-session training and assessment protocol, utilising the ABLE Exoskeleton. A follow-up visit after 4 weeks was included to assess after-training outcomes. Safety outcomes (device-related adverse events (AEs), number of drop-outs), feasibility and usability measures (level of assistance, donning/doffing-time) were recorded at every session together with changes in gait parameters and function. Patient-reported outcome measures including the rate of perceived exertion (RPE) and the psychosocial impact of the device were performed. Satisfaction with the device was evaluated in both participants and therapists. Results All 24 participants (45 ± 12 years), with mainly subacute SCI (< 1 year after injury) from C5 to L3, (ASIA Impairment Scale A to D) completed the follow-up. In 242 training sessions, 8 device-related AEs (pain and skin lesions) were reported. Total time for don and doff was 6:50 ± 2:50 min. Improvements in level of assistance and gait parameters (time, steps, distance and speed, p < 0.05) were observed in all participants. Walking function and RPE improved in participants able to complete walking tests with (n = 9) and without (n = 6) the device at study start (p < 0.05). A positive psychosocial impact of the exoskeleton was reported and the satisfaction with the device was good, with best ratings in safety (participants), weight (therapists), durability and dimensions (both). Conclusions Our study results prove the feasibility of safe gait training with the ABLE Exoskeleton in hospital settings for persons with SCI, with improved clinical outcomes after training. Our study protocol allowed for consistent comparison of the results with other exoskeleton trials and can serve as a future framework towards the standardisation of early clinical evaluations. Trial Registrationhttps://trialsearch.who.int/, DRKS00023503, retrospectively registered on November 18, 2020.
The results from the EMSCI ISNCSCI post-tests show a significantly better classification performance using the revised 2013 worksheet presumably due to the body-side based grouping of myotomes and dermatomes and their correct horizontal alignment. Even with these proven advantages of the new layout, the correct determination of MLs in the segments C2-C4 remains difficult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.