Optical satellite links have gained increasing attention throughout the last years. Especially for the application of optical satellite downlinks, DLR's Institute of Communications and Navigation is developing a number of experimental payloads for various satellites. Within the OSIRIS program, DLR develops optical terminals and systems which are optimized for small satellites. This paper will show measurements conducted with DLR's OSIRISv1-payload hosted on University of Stuttgart's Flying Laptop satellite. Furthermore, a summary of the OSIRIS program's current status will be given as well.
Downlink measurement campaigns from the optical downlink terminal OSIRISv1 onboard the LEO satellite Flying Laptop were carried out with the French Observatoire de la Côte d’Azur and with two Optical Ground Stations of the German Aerospace Center. On/off keyed data at 39 Mb/s were modulated on the laser signal, and according telecom reception was performed by the ground stations. The pointing of the laser terminal was achieved by open-loop body pointing of the satellite orientation, with its star sensor as attitude control signal. We report here on the measurements and investigations of the downlink signal and the data transmission.
Optical satellite links have gained increasing attention throughout the last years. Especially for the application of optical satellite downlinks. Within the OSIRIS program, DLR's Institute of Communications and Navigation develops optical terminals and systems which are optimized for small satellites. After the successful qualification and launch of two precursor terminals, DLR currently develops OSIRISv3, a 3 rd generation OSIRIS terminal with up to 10 Gbps downlink rate, and OSIRIS4Cubesat, a miniaturized version optimized for Cubesat Applications.
Flying Laptop is a small satellite carrying an optical communications payload. It was launched in 2017. To improve the satellite’s attitude determination, which is used to point the payload, a new sensor fusion algorithm based on a low pass filter and a multiplicative extended Kalman filter (MEKF) was developed. As an operational satellite, improvements are only possible via software updates. The algorithm estimates the satellite's attitude from star tracker and fibre-optical gyroscope (FOG) measurements. It also estimates the gyroscope bias. The global attitude estimate uses a quaternion representation, while the Kalman filter uses Gibbs Parameters to calculate small attitude errors. Past Kalman filter predictions are saved for several time steps so that a delayed star tracker measurement can be used to update the prediction at the time of measurement. The estimate at the current time is then calculated by predicting the system attitude based on the updated past estimate. The prediction step relies on the low-pass-filtered gyroscope measurements corrected by the bias estimate. The new algorithm was developed as part of a master’s thesis at the University of Stuttgart, where Flying Laptop was developed and built. It was simulated in a MATLAB/Simulink environment using the European Space Agency’s GAFE framework. In addition, the new filter was applied to measurement data from the satellite. The results were used to compare the performance with the current filter implementation. The new Kalman filter can deal with delayed, missing, or irregular star tracker measurements. It features a lower computational complexity than the previous standard extended Kalman filter used on Flying Laptop. The mean error of the attitude estimate was reduced by up to 90%. The low pass filter improves the rotation rate estimate between star tracker measurements, especially for biased and noisy gyroscopes. However, this comes at the cost of potentially less accurate attitude estimates. Educational satellites benefit from the new algorithm given their typically limited processing power and cheap commercial-off-the-shelf (COTS) sensors. This paper presents the approach in detail and shows its benefits
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.