Transparent semiconducting β-Ga 2 O 3 single crystals were grown by the Czochralski method from an iridium crucible under a dynamic protective atmosphere to control partial pressures of volatile species of Ga 2 O 3 . Thermodynamic calculations on different atmospheres containing CO 2 , Ar and O 2 reveal that CO 2 growth atmosphere combined with overpressure significantly decreases evaporation of volatile Ga 2 O 3 species without any harm to iridium crucible. It has been found that CO 2 , besides providing high oxygen concentration at high temperatures, is also acting as a minor reducing agent for Ga 2 O 3 . Different coloration of obtained crystals as well as optical and electrical properties are directly correlated with growth conditions (atmosphere, pressure and temperature gradients), but not with residual impurities. Typical electrical properties of the n-type β-Ga 2 O 3 crystals at room temperature are: ρ = 0.1 -0.3 Ωcm, μ n,Hall = 110 -150 cm 2 V -1 s -1 , n Hall = 2 -6×10 17 cm -3 and E Ionisation = 30 -40 meV. A decrease of transmission in the IR-region is directly correlated with the free carrier concentration and can be effectively modulated by the dynamic growth atmosphere. Electron paramagnetic resonance (EPR) spectra exhibit an isotropic shallow donor level and anisotropic defect level. According to differential thermal analysis (DTA) measurements, there is substantially no mass change of β-Ga 2 O 3 crystals below 1200 °C (i.e. no decomposition) under oxidizing or neutral atmosphere, while the mass gradually decreases with temperature above 1200 °C. High resolution transmission electron microscopy (HRTEM) images at atomic resolution show the presence of vacancies, which can be attributed to Ga or O sites, and interstitials, which can likely be attributed to Ga atoms.
We present a new approach for scaling-up the growth of β-Ga2O3 single crystals grown from the melt by the Czochralski method, which has also a direct application to other melt-growth techniques involving a noble metal crucible. Experimental and theoretical results point to melt thermodynamics as the crucial factor in increasing the volume of a growing crystal. In particular, the formation of metallic gallium in the liquid phase in large melt volumes causes problems with crystal growth and eutectic or intermetallic phase formation with the noble metal crucible. The larger crystals to be grown the higher oxygen concentration is required. The minimum oxygen concentration ranges from about 8 to 100 vol.% for 2 to 4 inch diameter cylindrical crystals, challenging the use of iridium crucibles in a combination with such high oxygen concentrations. A specific way of oxygen delivery to a growth furnace with the iridium crucible allows to minimize the formation of metallic gallium in the melt and thus obtaining large crystal volumes while decreasing the probability of the eutectic formation.
Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples. The measured widths of atomic columns are limited by thermal fluctuations of the atoms. Our method is also capable of locating embedded atomic dopant atoms in all three dimensions with subnanometer precision from only a single projection measurement.
Ceramic batteries equipped with Li-metal anodes are expected to double the energy density of conventional Li-ion batteries. Besides high energy densities, also high power is needed when batteries have to be developed for electric vehicles. Practically speaking, so-called critical current densities (CCD) higher than 3 mA cm À2 are needed to realize such systems. As yet, this value has, however, not been achieved for garnet-type Li 7 La 3 Zr 2 O 12 (LLZO) being one of the most promising ceramic electrolytes.Most likely, CCD values are influenced by the area specific resistance (ASR) governing ionic transport across the Li|electrolyte interface. Here, single crystals of LLZO with adjusted ASR are used to quantify this relationship in a systematic manner. It turned out that CCD values exponentially decrease with increasing ASR. The highest obtained CCD value was as high as 280 mA cm À2 . This value should be regarded as the room-temperature limit for LLZO when no external pressure is applied. Concluding, for polycrystalline samples either stack pressure or a significant increase of the interfacial area is needed to reach current densities equal or higher than the above-mentioned target value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.