A 57-year-old female lung transplant recipient developed tuberculosis after quadruple maintenance immunosuppression for acute cellular rejection with respiratory compromise. Deteriorating neurological status led to cerebral imaging and lumbar puncture, which showed Mycobacterium tuberculosis. Tuberculous meningitis with elevated intracranial pressure was treated for 2 weeks on a neurosurgical ward, and intensive care therapy was necessary for another 2 weeks. Complete neurological recovery was achieved after 3 months.
Background: Global end-diastolic volume (GEDV) measured by transpulmonary thermodilution is regarded as indicator of cardiac preload. A bolus of cold saline injected in a central vein travels through the heart and lung, but also the aorta until detection in a femoral artery. While it is well accepted that injection in the inferior vena cava results in higher values, the impact of the aortic volume on GEDV is unknown. In this study, we hypothesized that a larger aortic volume directly translates to a numerically higher GEDV measurement. Methods: We retrospectively analyzed data from 88 critically ill patients with thermodilution monitoring and who did require a contrast-enhanced thoracoabdominal computed tomography scan. Aortic volumes derived from imaging were compared with GEDV measurements in temporal proximity. Results: Median aortic volume was 194 ml (interquartile range 147 to 249 ml). Per milliliter increase of the aortic volume, we found a GEDV increase by 3.0 ml (95% CI 2.0 to 4.1 ml, p < 0.001). In case a femoral central venous line was used for saline bolus injection, GEDV raised additionally by 2.1 ml (95% CI 0.5 to 3.7 ml, p = 0.01) per ml volume of the vena cava inferior. Aortic volume explained 59.3% of the variance of thermodilution-derived GEDV. When aortic volume was included in multivariate regression, GEDV variance was unaffected by sex, age, body height, and weight. Conclusions: Our results suggest that the aortic volume is a substantial confounding variable for GEDV measurements performed with transpulmonary thermodilution. As the aorta is anatomically located after the heart, GEDV should not be considered to reflect cardiac preload. Guiding volume management by raw or indexed reference ranges of GEDV may be misleading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.