The metal-centered Δ/Λ-chirality of four-coordinated, nonplanar Zn(A(^)B)(2) complexes is correlated to the chirality of the bidentate enantiopure (R)-A(^)B or (S)-A(^)B Schiff base building blocks [A(^)B = (R)- or (S)-N-(1-(4-X-phenyl)ethyl)salicylaldiminato-κ(2)N,O with X = OCH(3), Cl, Br]. In the solid-state the (R) ligand chirality induces a Λ-M configuration and the (S) ligand chirality quantitatively gives the Δ-M configuration upon crystallization as deduced from X-ray single crystal studies. The diastereoselections of the pseudotetrahedral zinc-Schiff base complexes in CDCl(3) solution were investigated by (1)H NMR and by vibrational circular dichroism (VCD) spectroscopy. The appearance of two signals for the Schiff-base -CH═N- imine proton in (1)H NMR indicates an equilibrium of both Δ- and Λ-diastereomers with a diastereomeric ratio of roughly 20:80% for all three ligands. VCD proved to be very sensitive to the metal-centered Δ/Λ-chirality because of a characteristic band representing coupled vibrations of the two ligand's C═N stretch modes. The absolute configuration was assigned on the basis of agreement in sign with theoretical VCD spectra from Density Functional Theory calculations.
Mechanical aspects of the cellular environment can influence cell function, and in this context hydrogels can serve as an instructive matrix. Here we report that physicochemical properties of hydrogels derived from polysaccharides (agarose, κ-carrageenan) having an α-helical backbone can be tailored by inducing a switch in the secondary structure from α-helix to β-sheet through carboxylation. This enables the gel modulus to be tuned over four orders of magnitude (G′ 6 Pa-3.6 × 10 4 Pa) independently of polymer concentration and molecular weight. Using carboxylated agarose gels as a screening platform, we demonstrate that soft-carboxylated agarose provides a unique environment for the polarization of endothelial cells in the presence of soluble and bound signals, which notably does not occur in fibrin and collagen gels. Furthermore, endothelial cells organize into freestanding lumens over 100 μm in length. The finding that a biomaterial can modulate soluble and bound signals provides impetus for exploring mechanobiology paradigms in regenerative therapies.
Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34CD38) as well as the leukemic bulk (CD34CD38) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.