The fundamentals of probabilistic model checking for Markovian models and temporal properties have been studied extensively in the past 20 years. Research on methods for computing conditional probabilities for temporal properties under temporal conditions is, however, comparably rare. For computing conditional probabilities or expected values under ω-regular conditions in Markov chains, we introduce a new transformation of Markov chains that incorporates the effect of the condition into the model. For Markov decision processes, we show that the task to compute maximal reachability probabilities under reachability conditions is solvable in polynomial time, while it was conjectured to be computationally hard. Using adaptions of known automata-based methods, our algorithm can be generalized for computing the maximal conditional probabilities for ω-regular events under ω-regular conditions. The feasibility of our algorithms is studied in two benchmark examples.
To navigate their surroundings, cells rely on sensory input that is corrupted by noise. In cells performing chemotaxis, such noise arises from the stochastic binding of signalling molecules at low chemoattractant concentrations. We reveal a fundamental relationship between the speed of chemotactic steering and the strength of directional fluctuations that result from the amplification of noise in a chemical input signal. This relation implies a trade-off between steering that is slow and reliable, and steering that is fast but less reliable. We show that dynamic switching between these two modes of steering can substantially increase the probability to find a target, such as an egg to be found by sperm cells. This decision making confers no advantage in the absence of noise, but is beneficial when chemical signals are detectable, yet characterized by low signal-to-noise ratios. The latter applies at intermediate distances from a target, where signalling molecules are diluted, thus defining a ‘noise zone’ that cells have to cross. Our results explain decision making observed in recent experiments on sea urchin sperm chemotaxis. More generally, our theory demonstrates how decision making enables chemotactic agents to cope with high levels of noise in gradient sensing by dynamically adjusting the persistence length of a biased random walk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.