High pressure experiments on the OH + NO2 reaction are presented for 3 different temperatures. At 300 K, experiments in He (p = 2-500 bar) as well as in Ar (p = 2-4 bar) were performed. The rate constants obtained in Ar agree well with values which have been reported earlier by our group (Forster, R.; Frost, M.; Fulle, D.; Hamann, H. F.; Hippler, H.; Schlepegrell, A.; Troe, J. J. Chem. Phys. 1995, 103, 2949. Fulle, D.; Hamann, H. F.; Hippler, H.; Troe, J. J. Chem. Phys. 1998, 108, 5391). In contrast, the rate coefficients determined in He were found to be 15-25% lower than the values given in our earlier publications. Additionally, results for He as bath gas at elevated temperatures (T = 400 K, p = 3-150 bar; T = 600 K, p = 3-150 bar) are reported. The results obtained at elevated pressures are found to be in good agreement with existing literature data. The observed falloff behavior is analyzed in terms of the Troe formalism taking into account two reaction channels: one yielding HNO3 and one yielding HOONO. It is found that the extracted parameters are in agreement with rate constants for vibrational relaxation and isotopic scrambling as well as with experimentally determined branching ratios. Based on our analysis we determine falloff parameters to calculate the rate constant for atmospheric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.