bSarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions. Membrane recruitment of protein complexes, cell signaling modules, and enzymes is a critical step for many cellular functions. The family of tail-anchored proteins is recognized for anchoring proteins and vesicles to specific membranes, such as the endoplasmic reticulum (ER) and the outer mitochondrial membrane (1), and tail-anchored proteins are characterized by a C-terminal single transmembrane domain, which is posttranslationally inserted into membranes (2, 3).Sarcolemmal membrane-associated protein (SLMAP) is a tailanchored protein first identified in myocardiac cells (4). In mammals, this protein is known to be involved in myoblast fusion during embryonic development, excitation-contraction coupling in cardiac myocytes, and cell cycle progression (5-8). Furthermore, SLMAP was identified to be a disease gene for Brugada syndrome, a cardiac channelopathy (9). The functional diversity of SLMAP is dependent on alternative splicing, leading to at least four different isoforms of the protein (4, 6, 7, 10). Importantly, gene expression analyses have implicated SLMAP misexpression with endothelial dysfunctions in diabetes, chromosomal aberrations, and cancer (11-14), and currently, SLMAP is the target of lectin-based treatment of drug-resistant cancer cells (15).SLMAP is conserved from yeasts to humans, and characterized fungal SLMAP homologs include Neurospora crassa HAM-4 (hyphal anastomosis 4), Saccharomyces cerevisiae Far9p (factor arrest 9p) and Far10p, as well as Schizosaccharomyces pombe Csc1p (component of SIP complex 1p) (16-18). HAM-4 is essential for vegetativ...
In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-β-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.
BackgroundThe phloem of dicotyledonous plants contains specialized P-proteins (phloem proteins) that accumulate during sieve element differentiation and remain parietally associated with the cisternae of the endoplasmic reticulum in mature sieve elements. Wounding causes P-protein filaments to accumulate at the sieve plates and block the translocation of photosynthate. Specialized, spindle-shaped P-proteins known as forisomes that undergo reversible calcium-dependent conformational changes have evolved exclusively in the Fabaceae. Recently, the molecular characterization of three genes encoding forisome components in the model legume Medicago truncatula (MtSEO1, MtSEO2 and MtSEO3; SEO = sieve element occlusion) was reported, but little is known about the molecular characteristics of P-proteins in non-Fabaceae.ResultsWe performed a comprehensive genome-wide comparative analysis by screening the M. truncatula, Glycine max, Arabidopsis thaliana, Vitis vinifera and Solanum phureja genomes, and a Malus domestica EST library for homologs of MtSEO1, MtSEO2 and MtSEO3 and identified numerous novel SEO genes in Fabaceae and even non-Fabaceae plants, which do not possess forisomes. Even in Fabaceae some SEO genes appear to not encode forisome components. All SEO genes have a similar exon-intron structure and are expressed predominantly in the phloem. Phylogenetic analysis revealed the presence of several subgroups with Fabaceae-specific subgroups containing all of the known as well as newly identified forisome component proteins. We constructed Hidden Markov Models that identified three conserved protein domains, which characterize SEO proteins when present in combination. In addition, one common and three subgroup specific protein motifs were found in the amino acid sequences of SEO proteins. SEO genes are organized in genomic clusters and the conserved synteny allowed us to identify several M. truncatula vs G. max orthologs as well as paralogs within the G. max genome.ConclusionsThe unexpected occurrence of forisome-like genes in non-Fabaceae plants may indicate that these proteins encode species-specific P-proteins, which is backed up by the phloem-specific expression profiles. The conservation of gene structure, the presence of specific motifs and domains and the genomic synteny argue for a common phylogenetic origin of forisomes and other P-proteins.
The STRIPAK complex is involved in growth, cell fusion, development and signaling pathways, and thus malfunctions in the human STRIPAK complex often result in severe neuronal diseases and cancer. Despite the high degree of general conservation throughout the complex, several STRIPAK complex-associated small coiled-coil proteins of animals and yeasts are not conserved across species. As there are no data for filamentous ascomycetes, we addressed this through affinity purification with HA-tagged striatin ortholog PRO11 in Sordaria macrospora. Combining the method with liquid chromatography-mass spectrometry, we were able to co-purify STRIPAK complex interactor 1 (SCI1), the first STRIPAK-associated small coiled-coil protein in filamentous ascomycetes. Using yeast two-hybrid experiments, we identified SCI1 protein regions required for SCI1-PRO11 interaction, dimerization of SCI1 and interaction with other STRIPAK components. Further, both proteins PRO11 and SCI1 co-localize with the nuclear basket protein SmPOM152 at the nuclear envelope. Expression of the gene sci1 occurs during early developmental stages of S. macrospora, and the protein SCI1 in combination with PRO11 is required for cell fusion, vegetative growth and sexual development. The results of the present study will help to understand the underlying molecular mechanisms of STRIPAK signaling and function in cellular development and diseases in higher eukaryotes.
Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.