SUMMARYIn the 25 years, as the first of the syndecan family was cloned, interest in these transmembrane proteoglycans has steadily increased. While four distinct members are present in mammals, one is present in invertebrates, including C. elegans that is such a powerful genetic model. The syndecans, therefore, have a long evolutionary history, indicative of important roles. However, these roles have been elusive. The knockout in the worm has a developmental neuronal phenotype, while knockouts of the syndecans in the mouse are mild and mostly limited to post-natal rather than developmental effects. Moreover, their association with high-affinity receptors, such as integrins, growth factor receptors, frizzled and slit/robo, have led to the notion that syndecans are coreceptors, with minor roles. Given that their heparan sulphate chains can gather many different protein ligands, this gave credence to views that the importance of syndecans lay with their ability to concentrate ligands and that only the extracellular polysaccharide was of significance. Syndecans are increasingly identified with roles in the pathogenesis of many diseases, including tumour progression, vascular disease, arthritis and inflammation. This has provided impetus to understanding syndecan roles in more detail. It emerges that while the cytoplasmic domains of syndecans are small, they have clear interactive capabilities, most notably with the actin cytoskeleton. Moreover, through the binding and activation of signalling molecules, it is likely that syndecans are important receptors in their own right. Here, an overview of syndecan structure and function is provided, with some prospects for the future.
Animal behavior is shaped through interplay among genes, the environment, and previous experience. As in mammals, satiety signals induce quiescence in Caenorhabditis elegans. Here we report that the C. elegans transcription factor ETS-5, an ortholog of mammalian FEV/Pet1, controls satiety-induced quiescence. Nutritional status has a major influence on C. elegans behavior. When foraging, food availability controls behavioral state switching between active (roaming) and sedentary (dwelling) states; however, when provided with high-quality food, C. elegans become sated and enter quiescence. We show that ETS-5 acts to promote roaming and inhibit quiescence by setting the internal "satiety quotient" through fat regulation. Acting from the ASG and BAG sensory neurons, we show that ETS-5 functions in a complex network with serotonergic and neuropeptide signaling pathways to control food-regulated behavioral state switching. Taken together, our results identify a neuronal mechanism for controlling intestinal fat stores and organismal behavioral states in C. elegans, and establish a paradigm for the elucidation of obesity-relevant mechanisms.ETS transcription factor | neuronal signaling | satiety | fat levels | quiescence A nimal behavior is strongly influenced by the availability of food. In invertebrates and vertebrates, appetite, locomotor activity, and sleep rhythms are all driven by nutritional state (1-7). When malnourished, animals seek out a new food source by actively exploring their environment (roaming), whereas animals that are well fed tend to explore less (dwelling) and when fully sated enter a quiescent or sleep-like state (1-3, 8, 9). Transitions between these behavioral states can be regulated by sensory perception of external stimuli and through gut signals or other internal cues that are generated according to food quality (3,4,6).Initial evidence for neuronal regulation of feeding behavior was shown in mammals using hypothalamic lesions (10). Sectioning of specific regions within the rat hypothalamus evoked opposing behaviors. Removal of one section caused overeating and obesity, whereas removal of an adjacent section resulted in starvation owing to reduced eating (10). Subsequent studies showed that the pro-opiomelanocortin-expressing neurons in the hypothalamus function to suppress feeding, whereas a hypothalamic region that contains neuropeptide Y/agouti-related protein-expressing neurons promotes feeding (11). These adjacent brain regions integrate signals received from the gut that report satiety (12). The nutritive content of food itself also serves as a potent regulator of behavior. In mammals, a diet loaded with fats and sugars stimulates overfeeding and leads to obesity (13). In addition, rats can learn to select a source of food based exclusively on its nutritional value in the absence of external cues (14).In Caenorhabditis elegans, as in mammals, nutritive value is a behavioral stimulus (1, 4). Nematodes exhibit different behaviors when cultured on low-quality food compared to high-quality...
Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the C. elegans homolog of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans. Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on aberrant axon guidance process originating from deregulated H3K4 methylation.
Rac GTPases act as master switches to coordinate multiple interweaved signaling pathways. A major function for Rac GTPases is to control neurite development by influencing downstream effector molecules and pathways. In Caenorhabditis elegans, the Rac proteins CED-10, RAC-2 and MIG-2 act in parallel to control axon outgrowth and guidance. Here, we have identified a single glycine residue in the CED-10/Rac1 Switch 1 region that confers a non-redundant function in axon outgrowth but not guidance. Mutation of this glycine to glutamic acid (G30E) reduces GTP binding and inhibits axon outgrowth but does not affect other canonical CED-10 functions. This demonstrates previously unappreciated domain-specific functions within the CED-10 protein. Further, we reveal that when CED-10 function is diminished, the adaptor protein NAB-1 (Neurabin) and its interacting partner SYD-1 (Rho-GAP-like protein) can act as inhibitors of axon outgrowth. Together, we reveal that specific domains and residues within Rac GTPases can confer context-dependent functions during animal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.