Genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis) led to the identification of two dominant resistance genes, Pr1 and Pr2. Both genes proved to be effective against a local leaf-rust population as well as a subset of single-pustule isolates (SPIs) the latter of which comprised SPIs with very high virulence complexity. Resistance conferred by Pr1 and Pr2 was expressed in detached-leaf tests of seedlings as well as in field tests of adult plants. Molecular marker analysis allowed us to map Pr1 in the proximal part of rye chromosome 6RL, whereas Pr2 was assigned to the distal part of chromosome 7RL. These results are discussed in view of homoeology relationships among Triticeae. A proposal is submitted for the designation of resistance genes to rye leaf rust which would avoid interference with existing gene-symboling in respect to wheat leaf-rust resistances introgressed from rye into wheat or triticale.
Genetic diversity in elite rye germplasm as well as F testcross design enables fast QTL mapping to approach genes controlling grain yield, grain weight, tiller number and heading date in rye hybrids. Winter rye (Secale cereale L.) is a multipurpose cereal crop closely related to wheat, which offers the opportunity for a sustainable production of food and feed and which continues to emerge as a renewable energy source for the production of bioethanol and biomethane. Rye contributes to increase agricultural crop species diversity particularly in Central and Eastern Europe. In contrast to other small grain cereals, knowledge on the genetic architecture of complex inherited, agronomic important traits is yet limited for the outbreeding rye. We have performed a QTL analysis based on a F design and testcross performance of 258 experimental hybrids in multi-environmental field trials. A genetic linkage map covering 964.9 cM based on SSR, conserved-orthologous set (COS), and mixed-phase dominant DArT markers allowed to describe 22 QTL with significant effects for grain yield, heading date, tiller number, and thousand grain weight across seven environments. Using rye COS markers, orthologous segments for these traits have been identified in the rice genome, which carry cloned and functionally characterized rice genes. The initial genome scan described here together with the existing knowledge on candidate genes provides the basis for subsequent analyses of the genetic and molecular mechanisms underlying agronomic important traits in rye.
Three dominant resistance genes, Pr3, Pr4, and Pr5, were identified by genetic analysis of resistance to leaf rust in rye (Puccinia recondita f. sp. secalis). Each of the three genes confers resistance to a broad scale of single-pustule isolates (SPIs), but differences could be observed for specific Pr gene/SPI combinations. Resistance conferred by the three genes was effective in both detached-leaf tests carried out on seedlings and in field tests of adult plants. Molecular marker analysis mapped Pr3 to the centromeric region of rye chromosome arm 1RS, whereas Pr4 and Pr5 were assigned to the centromeric region of 1RL. Chromosomal localization and reaction patterns to specific SPIs provide evidence that the three Pr genes represent distinct and novel leaf-rust resistance genes in rye. The contributions of these genes to resistance breeding in rye and wheat are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.