Alzheimer's disease (AD) is a complex, multifactorial disease with a number of leading mechanisms, including neuroinflammation, processing of amyloid precursor protein (APP) to amyloid β peptide, tau protein hyperphosphorylation, relocalization, and deposition. These mechanisms are propagated by obesity, the metabolic syndrome and type-2 diabetes mellitus. Stress, sedentariness, dietary overconsumption of saturated fat and refined sugars, and circadian derangements/disturbed sleep contribute to obesity and related metabolic diseases, but also accelerate age-related damage and senescence that all feed the risk of developing AD too. The complex and interacting mechanisms are not yet completely understood and will require further analysis. Instead of investigating AD as a mono- or oligocausal disease we should address the disease by understanding the multiple underlying mechanisms and how these interact. Future research therefore might concentrate on integrating these by “systems biology” approaches, but also to regard them from an evolutionary medicine point of view. The current review addresses several of these interacting mechanisms in animal models and compares them with clinical data giving an overview about our current knowledge and puts them into an integrated framework.
Physical inactivity has emerged as an important and risk factor for cardiovascular and metabolic diseases, independent of levels of exercise engagement. Moreover, inactivity is associated with poor brain functioning. However, little data on the effects of physical inactivity on the brain is available and few methods are suitable to investigate this matter. We tested whether preventing lid climbing and reducing cage size could be used to model physical inactivity in mice. Sixty young adult C57Bl6 mice (10 weeks old) were divided over six groups with different housing conditions: in cages of three different sizes with lids that either allowed or prevented lid climbing. Housing under these conditions was maintained for a period of 19 weeks before the mice were killed for body composition analysis. Physical fitness tests performed around 5 and 10 weeks into the intervention revealed that motor coordination in the balance beam test was reduced by 30.65%, grip strength by 8.91% and muscle stamina in the inverted screen test by 70.37% in non-climbing mice as compared to climbing controls. Preventing climbing increased visceral fat mass by 17.31%, but did not reduce muscle mass. Neither preventing climbing nor reducing cage size affected anxiety assessed in the Open Field test and the Elevated Plus Maze. We did not find any negative effect of inactivity on spatial learning and memory in the novel object location test or working memory measured with the Y-maze Alternation test. The reduced physical fitness and increase in visceral fat mass show that our inactivity method models most effects of physical inactivity that are observed in experimental and observational studies in humans. Whereas established methods such as hindlimb unloading mimic many of the effects of bed rest, our novel method can be applied to study the effects of less extreme forms of physical inactivity (i.e., sedentary behavior) in various disease models including rodent models for brain diseases (i.e., stroke, Alzheimer’s disease).
For (metabolic) research models using mice, singly housing is widely used for practical purposes to study e.g. energy balance regulation and derangements herein. Mouse (social) housing practices could however influence study results by modulating (metabolic) health outcomes. To study the effects of the social housing condition, we assessed parameters for energy balance regulation and proneness to (diet induced) obesity in male C57Bl/6J mice that were housed individually or socially (in pairs) directly after weaning, both at standard ambient temperature of 21˚C. During adolescence, individually housed mice had reduced growth rate, while energy intake and energy expenditure were increased compared to socially housed counterparts. At 6 weeks of age, these mice had reduced lean body mass, but significantly higher white adipose tissue mass compared to socially housed mice, and higher UCP-1 mRNA expression in brown adipose tissue. During adulthood, body weight gain of individually housed animals exceeded that of socially housed mice, with elevations in both energy intake and expenditure. At 18 weeks of age, individually housed mice showed higher adiposity and higher mRNA expression of UCP-1 in inguinal white but not in brown adipose tissue. Exposure to an obesogenic diet starting at 6 weeks of age further amplified body weight gain and adipose tissue deposition and caused strong suppression of inguinal white adipose tissue mRNA UCP-1 expression. This study shows that post-weaning individual housing of male mice impairs adolescent growth and results in higher susceptibility to obesity in adulthood with putative roles for thermoregulation and/or affectiveness.
Breastfeeding (duration) can be positively associated with infant growth outcomes as well as improved cognitive functions during childhood and later life stages. (Prolonged) exposure to optimal lipid quantity and quality, i.e., the supramolecular structure of lipids, in mammalian milk, may contribute to these beneficial effects through nutritional early-life programming. In this pre-clinical study, we exposed male C57BL/6J mice from post-natal Days 16 to 42 (i.e., directly following normal lactation), to a diet with large lipid droplets coated with bovine milk fat globule membrane-derived phospholipids, which mimic more closely the supramolecular structure of lipid droplets in mammalian milk. We investigated whether exposure to this diet could affect growth and brain development-related parameters. As these outcomes are also known to be affected by the post-weaning social environment in mice, we included both individually housed and pair-wise housed animals and studied whether effects of diet were modulated by the social environment. After Day 42, all the animals were fed standard semi-synthetic rodent diet. Growth and body composition were assessed, and the mice were subjected to various behavioral tests. Individual housing attenuated adolescent growth, reduced femur length, and increased body fat mass. Adult social interest was increased due to individual housing, while cognitive and behavioral alterations as a result of different housing conditions were modest. The diet increased adolescent growth and femur length, increased lean body mass, reduced adolescent anxiety, and improved adult cognitive performance. These effects of diet exposure were comparable between individually and socially housed mice. Hence, early life exposure to a diet with lipid droplets that mimic the supramolecular structure of those in mammalian milk may improve adolescent growth and alters brain function in both socially and individually housed mice. These findings suggest that lipid structure in infant milk formula may be a relevant target for nutritional solutions, targeting both healthy infants and infants facing growth challenges.
11Individual housing from weaning onwards resulted in reduced growth rate during adolescence in male 12 C57Bl/6J mice that were housed individually, while energy intake and energy expenditure were 13 increased compared to socially housed counterparts. At 6 weeks of age, these mice had reduced lean 14 body mass, but significantly higher white adipose tissue mass compared to socially housed mice. Body 15 weight gain of individually housed animals exceeded that of socially housed mice during adulthood, 16 with elevations in both energy intake and expenditure. At 18 weeks of age, individually housed mice 17 showed higher adiposity and higher mRNA expression of UCP-1 in inguinal white adipose tissue. 18Exposure to an obesogenic diet starting at 6 weeks of age further amplified body weight gain and 19 adipose tissue deposition. This study shows that post-weaning individual housing of male mice results 20 in impaired adolescent growth and higher susceptibility to obesity in adulthood. Mice are widely used 21 to study obesity and cardiometabolic comorbidities. For (metabolic) research models using mice,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.