Synesthesia is a perceptual condition in which sensory stimulation triggers anomalous sensory experiences. In colored sequence synesthesia (CSS), color experiences are triggered by sequences such as letters or numbers. We performed a family based linkage analysis to identify genetic loci responsible for the increased neural crosstalk underlying CSS. Our results implicate a 23 MB region at 16q12.2-23.1, providing the first step in understanding the molecular basis of CSS.
Synesthesia is a condition in which normal stimuli can trigger anomalous associations. In this study, we exploit synesthesia to understand how the synesthetic experience can be explained by subtle changes in network properties. Of the many forms of synesthesia, we focus on colored sequence synesthesia, a form in which colors are associated with overlearned sequences, such as numbers and letters (graphemes). Previous studies have characterized synesthesia using resting-state connectivity or stimulus-driven analyses, but it remains unclear how network properties change as synesthetes move from one condition to another. To address this gap, we used functional MRI in humans to identify grapheme-specific brain regions, thereby constructing a functional "synesthetic" network. We then explored functional connectivity of color and grapheme regions during a synesthesia-inducing fMRI paradigm involving rest, auditory grapheme stimulation, and audiovisual grapheme stimulation. Using Markov networks to represent direct relationships between regions, we found that synesthetes had more connections during rest and auditory conditions. We then expanded the network space to include 90 anatomical regions, revealing that synesthetes tightly cluster in visual regions, whereas controls cluster in parietal and frontal regions. Together, these results suggest that synesthetes have increased connectivity between grapheme and color regions, and that synesthetes use visual regions to a greater extent than controls when presented with dynamic grapheme stimulation. These data suggest that synesthesia is better characterized by studying global network dynamics than by individual properties of a single brain region.
Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted.
Gaussian Graphical Models (GGM) are popularly used in neuroimaging studies based on fMRI, EEG or MEG to estimate functional connectivity, or relationships between remote brain regions. In multi-subject studies, scientists seek to identify the functional brain connections that are different between two groups of subjects, i.e. connections present in a diseased group but absent in controls or vice versa. This amounts to conducting two-sample large scale inference over network edges post graphical model selection, a novel problem we call Population Post Selection Inference. Current approaches to this problem include estimating a network for each subject, and then assuming the subject networks are fixed, conducting two-sample inference for each edge. These approaches, however, fail to account for the variability associated with estimating each subject's graph, thus resulting in high numbers of false positives and low statistical power. By using resampling and random penalization to estimate the post selection variability together with proper random effects test statistics, we develop a new procedure we call R 3 that solves these problems. Through simulation studies we show that R 3 offers major improvements over current approaches in terms of error control and statistical power. We apply our method to identify functional connections present or absent in autistic subjects using the ABIDE multi-subject fMRI study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.