C/AST/PEG nanocomposites with fumed AST (89 wt % Al 2 O 3 , 10 wt % SiO 2 , 1 wt % TiO 2 ), activated carbon, and poly(ethylene glycol), PEG, were prepared in a wide range of PEG and C/AST (1 : 9) contents. Thermal transitions (mainly in a PEG phase) were investigated by differential scanning calorimetry. The dynamic behavior was investigated by thermally stimulated depolarization current and dielectric relaxation spectroscopy. The PEG crystallinity degree decreases in the nanocomposites, in particular at C PEG 40 wt %. A significant fraction of amorphous polymer is immobilized at a filler surface making no contribution to the glass transition, whereas the rest exhibits a lower glass transition temperature, when compared with bulk polymer, because of loosened molecular packing of the chains. Several relaxations arising from the polymer matrix, the filler, and their combination were identified and analyzed. The segmental a-relaxation of the PEG matrix was found to become faster in the nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.