We present a dataset of daily resolution climatic time series that has been compiled for the European Climate Assessment (ECA). As of December 2001, this ECA dataset comprises 199 series of minimum, maximum and/or daily mean temperature and 195 series of daily precipitation amount observed at meteorological stations in Europe and the Middle East. Almost all series cover the standard normal period 1961-90, and about 50% extends back to at least 1925. Part of the dataset (90%) is made available for climate research on CDROM and through the Internet (at http://www.knmi.nl/samenw/eca).A comparison of the ECA dataset with existing gridded datasets, having monthly resolution, shows that correlation coefficients between ECA stations and nearest land grid boxes between 1946 and 1999 are higher than 0.8 for 93% of the temperature series and for 51% of the precipitation series. The overall trends in the ECA dataset are of comparable magnitude to those in the gridded datasets.The potential of the ECA dataset for climate studies is demonstrated in two examples. In the first example, it is shown that the winter (October-March) warming in Europe in the 1976-99 period is accompanied by a positive trend in the number of warm-spell days at most stations, but not by a negative trend in the number of cold-spell days. Instead, the number of cold-spell days increases over Europe. In the second example, it is shown for winter precipitation between 1946 and 1999 that positive trends in the mean amount per wet day prevail in areas that are getting drier and wetter.Because of its daily resolution, the ECA dataset enables a variety of empirical climate studies, including detailed analyses of changes in the occurrence of extremes in relation to changes in mean temperature and total precipitation.
Ambient particulate matter (PM) has been shown to have short- and long-term effects on cardiorespiratory mortality and morbidity. Most of the risk is associated with fine PM (PM(2.5)); however, recent evidence suggests that desert dust outbreaks are major contributors to coarse PM (PM(10-2.5)) and may be associated with adverse health effects. The objective of this study was to investigate the risk of total, cardiovascular and respiratory mortality associated with PM concentrations during desert dust outbreaks. We used a time-series design to investigate the effects of PM(10) on total non-trauma, cardiovascular and respiratory daily mortality in Cyprus, between 1 January 2004 and 31 December 2007. Separate PM(10) effects for non-dust and dust days were fit in generalized additive Poisson models. We found a 2.43% (95% CI: 0.53, 4.37) increase in daily cardiovascular mortality associated with each 10-μg/m(3) increase in PM(10) concentrations on dust days. Associations for total (0.13% increase, 95% CI: -1.03, 1.30) and respiratory mortality (0.79% decrease, 95% CI: -4.69, 3.28) on dust days and all PM(10) and mortality associations on non-dust days were not significant. Although further study of the exact nature of effects across different affected regions during these events is needed, this study suggests adverse cardiovascular effects associated with desert dust events.
High-resolution gridded daily data sets are essential for natural resource management and the analyses of climate changes and their effects. This study aims to evaluate the performance of 15 simple or complex interpolation techniques in reproducing daily precipitation at a resolution of 1 km 2 over topographically complex areas. Methods are tested considering two different sets of observation densities and different rainfall amounts. We used rainfall data that were recorded at 74 and 145 observational stations, respectively, spread over the 5760 km 2 of the Republic of Cyprus, in the Eastern Mediterranean. Regression analyses utilizing geographical copredictors and neighboring interpolation techniques were evaluated both in isolation and combined. Linear multiple regression (LMR) and geographically weighted regression methods (GWR) were tested. These included a step-wise selection of covariables, as well as inverse distance weighting (IDW), kriging, and 3D-thin plate splines (TPS). The relative rank of the different techniques changes with different station density and rainfall amounts. Our results indicate that TPS performs well for low station density and large-scale events and also when coupled with regression models. It performs poorly for high station density. The opposite is observed when using IDW. Simple IDW performs best for local events, while a combination of step-wise GWR and IDW proves to be the best method for large-scale events and high station density. This study indicates that the use of step-wise regression with a variable set of geographic parameters can improve the interpolation of large-scale events because it facilitates the representation of local climate dynamics.
Abstract. Floods are one of the most common natural disasters worldwide, leading to economic losses and loss of human lives. This paper highlights the hydrological effects of multi-temporal land use changes in flood hazard within the Yialias catchment area, located in central Cyprus. A calibrated hydrological model was firstly developed to describe the hydrological processes and internal basin dynamics of the three major subbasins, in order to study the diachronic effects of land use changes. For the implementation of the hydrological model, land use, soil and hydrometeorological data were incorporated. The climatic and stream flow data were derived from rain and flow gauge stations located in the wider area of the watershed basin. In addition, the land use and soil data were extracted after the application of object-oriented nearest neighbor algorithms of ASTER satellite images. Subsequently, the cellular automata (CA)–Markov chain analysis was implemented to predict the 2020 land use/land cover (LULC) map and incorporate it to the hydrological impact assessment. The results denoted the increase of runoff in the catchment area due to the recorded extensive urban sprawl phenomenon of the last decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.