[1] A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with nearcomplete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.
[1] We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period . This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and attention to finding the most appropriate method for spatial interpolation of daily climate observations. The gridded data are delivered on four spatial resolutions to match the grids used in previous products as well as many of the rotated pole Regional Climate Models (RCMs) currently in use. Each data set has been designed to provide the best estimate of grid box averages rather than point values to enable direct comparison with RCMs. We employ a three-step process of interpolation, by first interpolating the monthly precipitation totals and monthly mean temperature using three-dimensional thin-plate splines, then interpolating the daily anomalies using indicator and universal kriging for precipitation and kriging with an external drift for temperature, then combining the monthly and daily estimates. Interpolation uncertainty is quantified by the provision of daily standard errors for every grid square. The daily uncertainty averaged across the entire region is shown to be largely dependent on the season and number of contributing observations. We examine the effect that interpolation has on the magnitude of the extremes in the observations by calculating areal reduction factors for daily maximum temperature and precipitation events with return periods up to 10 years.
Indices for climate variability and extremes have been used for a long time, often by assessing days with temperature or precipitation observations above or below specific physically-based thresholds. While these indices provided insight into local conditions, few physically based thresholds have relevance in all parts of the world. Therefore, indices of extremes evolved over time and now often focus on relative thresholds that describe features in the tails of the distributions of meteorological variables. In order to help understand how extremes are changing globally, a subset of the wide range of possible indices is now being coordinated internationally which allows the results of studies from different parts of the world to fit together seamlessly. This paper reviews these as well as other indices of extremes and documents the obstacles to robustly calculating and analyzing indices and the methods developed to overcome these obstacles. Gridding indices are necessary in order to compare observations with climate model output. However, gridding indices from daily data are not always straightforward because averaging daily information from many stations tends to dampen gridded extremes. The paper describes recent progress in attribution of the changes in gridded indices of extremes that demonstrates human influence on the probability of extremes. The paper also describes model projections of the future and wraps up with a discussion of ongoing efforts to refine indices of extremes as they are being readied to contribute to the IPCC's Fifth Assessment Report.
[1] In this study, we present the collation and analysis of the gridded land-based dataset of indices of temperature and precipitation extremes: HadEX2. Indices were calculated based on station data using a consistent approach recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices, resulting in the production of 17 temperature and 12 precipitation indices derived from daily maximum and minimum temperature and precipitation observations. High-quality in situ observations from over 7000 temperature and 11,000 precipitation meteorological stations across the globe were obtained to calculate the indices over the period of record available for each station. Monthly and annual indices were then interpolated onto a 3.75 Â 2.5 longitude-latitude grid over the period 1901-2010. Linear trends in the gridded fields were computed and tested for statistical significance. Overall there was very good agreement with the previous HadEX dataset during the overlapping data period. Results showed widespread significant changes in temperature extremes consistent with warming, especially for those indices derived from daily minimum temperature over the whole 110 years of record but with stronger trends in more recent decades. Seasonal results showed significant warming in all seasons but more so in the colder months. Precipitation indices also showed widespread and significant trends, but the changes were much more spatially heterogeneous compared with temperature changes. However, results indicated more areas with significant increasing trends in extreme precipitation amounts, intensity, and frequency than areas with decreasing trends.Citation: Donat, M. G., et al. (2013), Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset,
We present a dataset of daily resolution climatic time series that has been compiled for the European Climate Assessment (ECA). As of December 2001, this ECA dataset comprises 199 series of minimum, maximum and/or daily mean temperature and 195 series of daily precipitation amount observed at meteorological stations in Europe and the Middle East. Almost all series cover the standard normal period 1961-90, and about 50% extends back to at least 1925. Part of the dataset (90%) is made available for climate research on CDROM and through the Internet (at http://www.knmi.nl/samenw/eca).A comparison of the ECA dataset with existing gridded datasets, having monthly resolution, shows that correlation coefficients between ECA stations and nearest land grid boxes between 1946 and 1999 are higher than 0.8 for 93% of the temperature series and for 51% of the precipitation series. The overall trends in the ECA dataset are of comparable magnitude to those in the gridded datasets.The potential of the ECA dataset for climate studies is demonstrated in two examples. In the first example, it is shown that the winter (October-March) warming in Europe in the 1976-99 period is accompanied by a positive trend in the number of warm-spell days at most stations, but not by a negative trend in the number of cold-spell days. Instead, the number of cold-spell days increases over Europe. In the second example, it is shown for winter precipitation between 1946 and 1999 that positive trends in the mean amount per wet day prevail in areas that are getting drier and wetter.Because of its daily resolution, the ECA dataset enables a variety of empirical climate studies, including detailed analyses of changes in the occurrence of extremes in relation to changes in mean temperature and total precipitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.