[1] We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period . This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and attention to finding the most appropriate method for spatial interpolation of daily climate observations. The gridded data are delivered on four spatial resolutions to match the grids used in previous products as well as many of the rotated pole Regional Climate Models (RCMs) currently in use. Each data set has been designed to provide the best estimate of grid box averages rather than point values to enable direct comparison with RCMs. We employ a three-step process of interpolation, by first interpolating the monthly precipitation totals and monthly mean temperature using three-dimensional thin-plate splines, then interpolating the daily anomalies using indicator and universal kriging for precipitation and kriging with an external drift for temperature, then combining the monthly and daily estimates. Interpolation uncertainty is quantified by the provision of daily standard errors for every grid square. The daily uncertainty averaged across the entire region is shown to be largely dependent on the season and number of contributing observations. We examine the effect that interpolation has on the magnitude of the extremes in the observations by calculating areal reduction factors for daily maximum temperature and precipitation events with return periods up to 10 years.
[1] Gridded data sets derived through interpolation of station data have a number of potential inaccuracies and errors. These errors can be introduced either by the propagation of errors in the station data into derived gridded data or by limitations in the ability of the interpolation method to estimate grid values from the underlying station network. Recently, Haylock et al. (2008) reported on the development of a new high-resolution gridded data set of daily climate over Europe (termed E-OBS). E-OBS is based on the largest available pan-European data set, and the interpolation methods used were chosen after careful evaluation of a number of alternatives, yet the data set will inevitably have errors and uncertainties. In this paper we assess the E-OBS data set with respect to:(1) homogeneity of the gridded data; (2) evaluation of inaccuracies arising from available network density, through comparison with existing data sets that have been developed with much denser station networks; and (3) the accuracy of the estimates of interpolation uncertainty that are provided as part of E-OBS. We find many inhomogeneities in the gridded data that are primarily caused by inhomogeneities in the underlying station data. In the comparison of existing data with E-OBS, we find that while correlations overall are high, relative differences in precipitation are large, and usually biased toward lower values in E-OBS. From the analysis of the interpolation uncertainties provided as part of E-OBS, we conclude that the interpolation standard deviation provided with the data significantly underestimates the true interpolation error when cross validated using station data, and therefore will similarly underestimate the interpolation error in the gridded E-OBS data. While E-OBS represents a valuable new resource for climate research in Europe, users of the data need to be aware of the limitations in the data set and use the data appropriately.Citation: Hofstra, N., M. Haylock, M. New, and P. D. Jones (2009), Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature,
[1] We compare versions of six interpolation methods for the interpolation of daily precipitation, mean, minimum and maximum temperature, and sea level pressure from station data over Europe from 1961 to 1990. The interpolation methods evaluated are global and local kriging, two versions of angular distance weighting, natural neighbor interpolation, regression, 2D and 3D thin plate splines, and conditional interpolation. We first evaluated, using station cross-validation and several skill scores, relative skill of each method at estimating point values, looking at spatial and temporal patterns and the frequency distribution of the variables. We then compared, for precipitation, gridded area averages from the candidate interpolation methods against existing high-resolution gridded data sets for the UK and the Alps, which are derived from a much denser network of stations. In both point and area-average cases, differences in skill between interpolation methods at any one point are smaller than the range in skill for a single method either across the domain, or in different seasons. The main control on spatial patterns of interpolation skill is density of the station network, with topographic complexity a compounding factor. The relative skill of different methods remains relatively constant through time, despite a varying station network. Skill in interpolating extreme events is lower than for average days, but relative skill of different methods remains the same. We select global kriging as the best performing method overall, for use in the development of a daily, high-resolution, long-term, European data set of climate variables as part of the EU funded ENSEMBLES project.
We study the influence of station network density on the distributions and trends in indices of areaaverage daily precipitation and temperature in the E-OBS high resolution gridded dataset of daily climate over Europe, which was produced with the primary purpose of Regional Climate Model evaluation. Area averages can only be determined with reasonable accuracy from a sufficiently large number of stations within a grid-box. However, the station network on which E-OBS is based comprises only 2,316 stations, spread unevenly across approximately 18,000 0.22°grid-boxes. Consequently, grid-box data in E-OBS are derived through interpolation of stations up to 500 km distant, with the distance of stations that contribute significantly to any grid-box value increasing in areas with lower station density. Since more dispersed stations have less shared variance, the resultant interpolated values are likely to be over-smoothed, and extreme daily values even more so. We perform an experiment over five E-OBS grid boxes for precipitation and temperature that have a sufficiently dense local station network to enable a reasonable estimate of the area-average. We then create a series of randomly selected station subnetworks ranging in size from four to all stations within the E-OBS interpolation search radii. For each sub-network realisation, we estimate the grid-box average applying the same interpolation methodology as used for E-OBS, and then evaluate the effect of network density on the distribution of daily values, as well as trends in extremes indices. The results show that when fewer stations have been used for the interpolation, both precipitation and temperature are over-smoothed, leading to a strong tendency for interpolated daily values to be reduced relative to the ''true'' areaaverage. The smoothing is greatest for higher percentiles, and therefore has a disproportionate effect on extremes and any derived extremes indices. For many regions of the E-OBS dataset, the station density is sufficiently low to expect this smoothing effect to be significant and this should be borne in mind by any users of the E-OBS dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.