Abstract.Paintings created by famous artists, representing sunsets throughout the period 1500-1900, provide proxy information on the aerosol optical depth following major volcanic eruptions. This is supported by a statistically significant correlation coefficient (0.8) between the measured redto-green ratios of a few hundred paintings and the dust veil index. A radiative transfer model was used to compile an independent time series of aerosol optical depth at 550 nm corresponding to Northern Hemisphere middle latitudes during the period 1500-1900. The estimated aerosol optical depths range from 0.05 for background aerosol conditions, to about 0.6 following the Tambora and Krakatau eruptions and cover a period practically outside of the instrumentation era.
Light shelves have been discussed in numerous studies as suitable solutions for controlling daylight in side-lit spaces. It is a system that can be easily modified, offering a range of design solutions. It can be easily mounted on the exterior and/or the interior of a vertical opening, it can come in various shapes from static flat forms to curved reflective surfaces, or it can even be actively controlled. A light shelf can offer shading and at the same time can redirect a significant part of the incoming light flux towards the ceiling improving daylight uniformity. Due to the aforesaid functions, light shelves are among the most popular system design solutions when it comes to daylight exploitation. The purpose of this paper is twofold. Firstly, to present the main research findings in relation to light shelves as daylighting systems and secondly to analyze the results, trying to establish a common basis for some efficient and practical design rules. The present paper is a review of the research realized in the last three decades concerning these systems together with their associated implications in a building's daylight performance as well as in its energy balance in a few cases. In addition, the critical review of their design principles is included, which makes the presented information useful for design teams trying to select the optimal available system for any specific project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.