Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.
Somatic hypermutation is initiated by activation-induced cytidine deaminase (AID), and occurs in several kilobases of DNA around rearranged immunoglobulin variable (V) genes and switch (S) sites before constant genes. AID deaminates cytosine to uracil, which can produce mutations of C:G nucleotide pairs, and the mismatch repair protein Msh2 participates in generating substitutions of downstream A:T pairs. Msh2 is always found as a heterodimer with either Msh3 or Msh6, so it is important to know which one is involved. Therefore, we sequenced V and S regions from Msh3- and Msh6-deficient mice and compared mutations to those from wild-type mice. Msh6-deficient mice had fewer substitutions of A and T bases in both regions and reduced heavy chain class switching, whereas Msh3-deficient mice had normal antibody responses. This establishes a role for the Msh2-Msh6 heterodimer in hypermutation and switch recombination. When the positions of mutation were mapped, several focused peaks were found in Msh6 −/− clones, whereas mutations were dispersed in Msh3 −/− and wild-type clones. The peaks occurred at either G or C in WGCW motifs (W = A or T), indicating that C was mutated on both DNA strands. This suggests that AID has limited entry points into V and S regions in vivo, and subsequent mutation requires Msh2-Msh6 and DNA polymerase.
Activation-induced deaminase (AID) initiates diversity of immunoglobulin genes through deamination of cytosine to uracil. Two opposing models have been proposed for the deamination of DNA or RNA by AID. Although most data support DNA deamination, there is no physical evidence of uracil residues in immunoglobulin genes. Here we demonstrate their presence by determining the sensitivity of DNA to digestion with uracil DNA glycosylase (UNG) and abasic endonuclease. Using several methods of detection, we identified uracil residues in the variable and switch regions. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly cytosine bases. Our data provide direct evidence for the model that AID functions by deaminating cytosine residues in DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.