In 1984, Caulerpa taxifolia (Vahl) C. Agardh was reported along the coast of Monaco. Over the past decade it has spread along 60 km of the Mediterranean coastline and presently represents a potential risk to biodiversity. Several explanations have been advanced regarding the presence of C. taxifolia in the Mediterranean. One hypothesis maintains that the alga was introduced accidentally into the sea at Monaco, where it has been used as a decorative alga in aquaria. Caulerpa taxifolia has not been reported in earlier marine floras of the Mediterranean, and its sudden appearance has suggested that it may be a recent introduction. Another hypothesis proposes that C. taxifolia and Caulerpa mexicana Sonder ex Kützing are morphological variants of one another and hence conspecific taxa. Caulerpa mexicana has been found in the eastern Mediterranean since at least 1941. In order to establish the taxonomic identities of these taxa, individuals from five populations of C. taxifolia and four populations of C. mexicana were collected from within and outside of the Mediterranean. Comparative DNA sequence analysis of the nuclear ribosomal cistron, including the 3′‐end of the 18S, ITS1, 5.8S, and ITS2 regions, show clear phylogenetic separation of the two taxa using parsimony and maximum likelihood analyses. Separation is maintained whether the analyses are based on just the more conserved 18S data or just the fast‐ evolving spacers. The two species are thus not conspecific. For specimens of uncertain identity (i.e. taxifolia–mexicana intermediates), a PCR diagnostic amplification can easily be performed because the ITS1 in C. taxifolia is 36 nucleotides shorter than the ITS1 in C. mexicana. Whether or not C. taxifolia has been present for a longer period of time in the marine flora, either as a cryptic endemic species or as the result of one or more introductions, represents an additional hypothesis that will require identification of biogeographic populations from throughout the world, as well as a population‐level study of the Mediterranean region.
DNA-DNA hybridizations between single-copy nuclear DNA from Lamina~a digitata and total DNA from L. saccharina, L. hyperborea, L. rodriguezii, L. ochroleuca and Chorda ilium, respectively, show that these species of Laminaria are genotypically closely related. Chorda fflum is only distantly related with L. digitata. Based on the thermal elution patterns of the DNA hybrids, as quantified by ATm(e) values, it is hypothesized that all five species of Laminaria evolved at about the same time from their most recent common ancestor some 15-19 Ma ago. This phylogenetic hypothesis is discussed in relation to the history of modern laminarialean distribution pattems.
The seaweed Cladophoropsis membranacea (Hofman Bang ex. C. Agardh) Børgesen is a widely distributed species on coral reefs and along rocky coastlines throughout the tropics and subtropics. In a recent population‐level survey openface>1600 individuals with eight microsatellite loci, a number of isolates from biogeographically disjunct locations could not be amplified for any of the loci. Nonamplifiable and amplifiable isolates co‐occurred within the Canary Islands, Cape Verde Islands, and in the Caribbean. These unexpected results led to question whether or not C. membranacea is a single species. Phylogenetic relationships were evaluated using rDNA ITS1 and ITS2 sequence comparisons from 42 isolates sampled from a subset of 30 of the 66 locations. Four well‐supported clades were identified. Sequence divergence within clades was <1%, whereas between‐clade divergence was 2%–3%. Intraindividual variation was extremely low with no effects on the analysis. A strong, but imperfect, correspondence was found between ITS clades and amplifiable microsatellite loci. It is concluded that C. membranacea consists of three cryptic species. Using Pacific isolates as an outgroup, the most basal clade included the Central Canary Islands, Cape Verde, and Bonaire (Caribbean) isolates and thus spanned the widest latitude. Two derived sister clades consisted of a southern transtropical group stretching across the SE Caribbean to the Cape Verde Islands and African coast (but not the Canary Islands) and a NE‐Canary Island‐Mediterranean clade that also included the Red Sea. The detection of overlapping biogeographic distributions highlights the importance of ecotypic differentiation with respect to temperature and the importance of shifting sea surface isotherms that have driven periodic extinctions and recolonizations of the Canary Islands—a crossroads of marine floral exchange—since the last glacial maximum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.