Tissue-specific factors manipulate immunity via modulating characteristics of DC and may provide tools to generate tissue-specific immunotherapy.
There is now substantial evidence that the prevalence of sensitization to common allergens has increased markedly over the last half century, with a consequent increase in the prevalence of atopic disease. There is also some evidence that sensitization to food has increased (1-3). This is important because reactions to food allergens can be particularly severe and there are implications for food safety.There is no clear understanding yet of the reasons for the increase in sensitization, though there are several active lines of enquiry, nor is it clear whether sensitization to foods is a special case or whether the causes of food allergy are the same as those for allergy in general. There is, however, circumstantial evidence that there may be specific causes of food allergy over and above the general causes of allergic sensitization.This study reviews what is known about the causes of food allergy. We have avoided discussing the general causes of sensitization. For the purposes of this publication, the term food allergy is confined to IgE-mediated reactions to food and the study is strongly focused on findings from studies of humans. We refer to sensitization where there is evidence of IgE to a food, and allergy where there is also evidence of clinical response to the food.Food allergy is an increasing problem in Europe and elsewhere and severe reactions to food are also becoming more common. As food allergy is usually associated with other forms of allergic sensitisation it is likely that many risk factors are common to all forms of allergy. However the potential severity of the disease and the specific public heath measures required for food allergy make it important to identify the specific risk factors for this condition. Food allergy is unusual in that it often manifests itself very early in life and commonly remits with the development of tolerance. Hypotheses that explain the distribution of food allergy include specific genetic polymorphisms, the nature of the allergens involved and the unique exposure to large quantities of allergen through the gut. Progress has been made in developing more specific and testable hypotheses but the evidence for any of these is still only preliminary. Further collaborative research is required to develop an appropriate public health response to this growing problem.
A standardized challenge vehicle proven to sufficiently blind processed, powdered hazelnut and celeriac ingredients and that can be reproducibly manufactured has been developed. This pilot study shows that the vehicle is promising for the confirmation of food allergy and determination of MEDs in adults and children with body weight >28.8 kg (approximately 7-11 years old).
Sensitization of the respiratory tract is an important occupational health challenge, and understanding the mechanistic basis of this effect is necessary to support the development of toxicological tools to detect chemicals that may cause it. Here we use the adverse outcome pathway (AOP) framework to organize information that may better inform our understanding of sensitization of the respiratory tract, building on a previously published skin sensitization AOP, relying on literature evidence linked to low-molecular-weight organic chemicals and excluding other known respiratory sensitizers acting via different molecular initiating events. The established key events (KEs) are as follows: (1) covalent binding of chemicals to proteins, (2) activation of cellular danger signals (inflammatory cytokines and chemokines and cytoprotective gene pathways), (3) dendritic cell activation and migration, (4) activation, proliferation, and polarization of T cells, and (5) sensitization of the respiratory tract. These events mirror the skin sensitization AOP but with specific differences. For example, there is some evidence that respiratory sensitizers bind preferentially to lysine moieties, whereas skin sensitizers bind to both cysteine and lysine. Furthermore, exposure to respiratory sensitizers seems to result in cell behavior for KEs 2 and 3, as well as the effector T cell response, in general skewing toward cytokine secretions predominantly associated with T helper 2 (Th2) response. Knowledge gaps include the lack of understanding of which KE(s) drive the Th2 polarization. The construction of this AOP may provide insight into predictive tests that would in combination support the discrimination of respiratory-sensitizing from non-and skin-sensitizing chemicals, a clear regulatory need.
There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the acquisition of sensitisation to chemical respiratory allergens is a dose-related phenomenon, and that thresholds exist, it is frequently difficult to define accurate numerical values for threshold exposure levels. Nevertheless, based on occupational exposure data it may sometimes be possible to derive levels of exposure in the workplace, which are safe. An additional observation is the lack currently of suitable experimental methods for both routine hazard characterisation and the measurement of thresholds, and that such methods are still some way off. Given the current trajectory of toxicology, and the move towards the use of non-animal in vitro and/or in silico) methods, there is a need to consider the development of alternative approaches for the identification and characterisation of respiratory sensitisation hazards, and for risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.