More diverse multipurpose prevention technologies are urgently needed to provide localized, topical pre-exposure prophylaxis against sexually transmitted infections (STIs). In this work, we established the foundation for a multipurpose platform, in the form of polymeric electrospun fibers (EFs), to physicochemically treat herpes simplex virus 2 (HSV-2) infection. To initiate this study, we fabricated different formulations of poly(lactic-co-glycolic acid) (PLGA) and poly(DL-lactide-co-ε-caprolactone) (PLCL) EFs that encapsulate Acyclovir (ACV), to treat HSV-2 infection in vitro. Our goals were to assess the release and efficacy differences provided by these two different biodegradable polymers, and to determine how differing concentrations of ACV affected fiber efficacy against HSV-2 infection and the safety of each platform in vitro. Each formulation of PLGA and PLCL EFs exhibited high encapsulation efficiency of ACV, sustained-delivery of ACV through one month, and in vitro biocompatibility at the highest doses of EFs tested. Additionally, all EF formulations provided complete and efficacious protection against HSV-2 infection in vitro, regardless of the timeframe of collected fiber eluates tested. This work demonstrates the potential for PLGA and PLCL EFs as delivery platforms against HSV-2, and indicates that these delivery vehicles may be expanded upon to provide protection against other sexually transmitted infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.