The sequence of apamin, an 18 residue bee venom toxin, encloses all the information required for the correct disulfidecoupled folding into the cystine-stabilized a-helical motif. Three apamin analogs, each containing a pair of selenocysteine residues replacing the related cysteines, were synthesized to mimic the three possible apamin isomers with two crossed, parallel, or consecutive disulfides, respectively. Refolding experiments clearly revealed that the redox potential of selenocysteine prevails over the sequence encoded structural information for proper folding of apamin. Thus, selenocysteine can be used as a new device to generate productive and nonproductive folding intermediates of peptides and proteins. In fact, disulfides are selectively reduced in presence of the diselenide and the conformational features derived from these intermediates as well as from the three-dimensional~3D! structures of the selenocysteine-containing analogs with their nonnatural networks of diselenide0disulfide bridges allowed to gain further insight into the subtle driving forces for the correct folding of apamin that mainly derive from local conformational preferences.
Since high-intensity synchrotron radiation is available, "extended X-ray absorption fine structure" spectroscopy (EXAFS) is used for detailed structural analysis of metal ion environments in proteins. However, the information acquired is often insufficient to obtain an unambiguous picture. ENDOR spectroscopy allows the determination of hydrogen positions around a metal ion. However, again the structural information is limited. In the present study, a method is proposed which combines computations with spectroscopic data from EXAFS, EPR, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). From EXAFS a first picture of the nearest coordination shell is derived which has to be compatible with EPR data. Computations are used to select sterically possible structures, from which in turn structures with correct H and N positions are selected by ENDOR and ESEEM measurements. Finally, EXAFS spectra are re-calculated and compared with the experimental data. This procedure was successfully applied for structure determination of the Cu(2+) complex of the octapeptide repeat of the human prion protein. The structure of this octarepeat complex is rather similar to a pentapeptide complex which was determined by X-ray structure analysis. However, the tryptophan residue has a different orientation: the axial water is on the other side of the Cu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.