Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.
Male sex predisposes to many kidney diseases. Considering that androgens exert deleterious effects in a variety of cell types within the kidney, we hypothesized that dihydrotestosterone (DHT) would alter the biology of the renal tubular cell by inducing changes in the proteome. We employed stable isotope labeling with amino acids (SILAC) in an indirect spike-in fashion to accurately quantify the proteome in DHT-and 17-estradiol (EST)-treated human proximal tubular epithelial cells (PTEC). Of the 5043 quantified proteins, 76 were differentially regulated. Biological processes related to energy metabolism were significantly enriched among DHT-regulated proteins. SILAC ratios of 3 candidates representing glycolysis, Nacetylglucosamine metabolism and fatty acid -oxidation, namely glucose-6-phosphate isomerase (GPI), glucosamine-6-phosphate-N-acetyltransferase 1 (GNPNAT1), and mitochondrial trifunctional protein subunit alpha (HADHA), were verified in vitro. In vivo, renal GPI and HADHA protein expression was significantly increased in males. Furthermore, male sex was associated with significantly higher GPI, GNPNAT1, and HADHA kidney protein expression in two different murine models of diabetes. Enrichment analysis revealed a link between our DHTregulated proteins and oxidative stress within the diabetic kidney. This finding was validated in vivo, as we observed increased oxidative stress levels in control and diabetic male kidneys, compared with females. This in depth quantitative proteomics study of human primary PTEC response to sex hormone administration suggests that male sex hormone stimulation results in perturbed energy metabolism in kidney cells, and that this perturbation results in increased oxidative stress in the renal cortex.
Chronic Kidney Disease (CKD)1 often results in irreversible deterioration of renal function that can progress to renal failure (1). Sex plays a relevant role in the progression and severity of many kidney diseases (2). At a clinical level, it is From the ‡Department
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.