Knowing the arterial geometry might be helpful in the assessment of a plaque rupture event. We present a proof of concept study implementing a novel method which can predict the evolution in time of the atheromatic plaque in carotids using only statistical features which are extracted from the arterial geometry. Four feature selection methods were compared: Quadratic Programming Feature Selection (QPFS), Minimal Redundancy Maximal Relevance (mRMR), Mutual Information Quotient (MIQ) and Spectral Conditional Mutual Information (SPECCMI). The classifier used is the Support Vector Machines (SVM) with linear and Gaussian kernels. The maximum accuracy that was achieved in predicting the variation in the mean value of the Lumen distance from the centerline and the thickness was 71.2% and 70.7% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.